Search results
Results from the WOW.Com Content Network
A relatively simple proof of the theorem was found by Bruce Kleiner. [5] Later, Terence Tao and Yehuda Shalom modified Kleiner's proof to make an essentially elementary proof as well as a version of the theorem with explicit bounds. [6] [7] Gromov's theorem also follows from the classification of approximate groups obtained by Breuillard, Green ...
Following ideas of Edward Witten, Gromov's work is also fundamental for Gromov-Witten theory, which is a widely studied topic reaching into string theory, algebraic geometry, and symplectic geometry. [39] [40] [41] From a different perspective, Gromov's work was also inspirational for much of Andreas Floer's work. [42]
The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means).
Gromov's theorem may mean one of a number of results of Mikhail Gromov: One of Gromov's compactness theorems: Gromov's compactness theorem (geometry) in Riemannian geometry; Gromov's compactness theorem (topology) in symplectic topology; Gromov's Betti number theorem Gromov–Ruh theorem on almost flat manifolds
The non-squeezing theorem, also called Gromov's non-squeezing theorem, is one of the most important theorems in symplectic geometry. [1] It was first proven in 1985 by Mikhail Gromov. [2] The theorem states that one cannot embed a ball into a cylinder via a symplectic map unless the radius of the ball is less than or equal to the radius of the ...
A geodesic on a football illustrating the proof of Gromov's filling area conjecture in the hyperelliptic case (see explanation below).. In mathematics, systolic geometry is the study of systolic invariants of manifolds and polyhedra, as initially conceived by Charles Loewner and developed by Mikhail Gromov, Michael Freedman, Peter Sarnak, Mikhail Katz, Larry Guth, and others, in its ...
In mathematics, the Haagerup property, named after Uffe Haagerup and also known as Gromov's a-T-menability, is a property of groups that is a strong negation of Kazhdan's property (T). Property (T) is considered a representation-theoretic form of rigidity, so the Haagerup property may be considered a form of strong nonrigidity; see below for ...
This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem. The lamplighter group has an exponential growth. The existence of groups with intermediate growth, i.e. subexponential but not polynomial was open for many years.