enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    It deviates in the ultraviolet and infrared regions. In optics, Cauchy's transmission equation is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis Cauchy, who originally defined it in 1830 in his article "The refraction and ...

  3. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, or refracted, when entering a material. This is described by Snell's law of refraction, n1 sin θ1 = n2 ...

  4. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    In its original and the most general form, the Sellmeier equation is given as. where n is the refractive index, λ is the wavelength, and Bi and Ci are experimentally determined Sellmeier coefficients. These coefficients are usually quoted for λ in micrometres. Note that this λ is the vacuum wavelength, not that in the material itself, which ...

  5. Snell's law - Wikipedia

    en.wikipedia.org/wiki/Snell's_law

    Snell's law. Refraction of light at the interface between two media of different refractive indices, with n 2 > n 1. Since the velocity is lower in the second medium (v 2 < v 1), the angle of refraction θ 2 is less than the angle of incidence θ 1; that is, the ray in the higher-index medium is closer to the normal.

  6. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    In the physical sciences and electrical engineering, dispersion relations describe the effect of dispersion on the properties of waves in a medium. A dispersion relation relates the wavelength or wavenumber of a wave to its frequency. Given the dispersion relation, one can calculate the frequency-dependent phase velocity and group velocity of ...

  7. Optical properties of water and ice - Wikipedia

    en.wikipedia.org/wiki/Optical_properties_of...

    The refractive index of water at 20 °C for visible light is 1.33. [1] The refractive index of normal ice is 1.31 (from List of refractive indices). In general, an index of refraction is a complex number with real and imaginary parts, where the latter indicates the strength of absorption loss at a particular wavelength.

  8. Bragg's law - Wikipedia

    en.wikipedia.org/wiki/Bragg's_law

    Bragg's law. In many areas of science, Bragg's law, Wulff –Bragg's condition, or Laue–Bragg interference are a special case of Laue diffraction, giving the angles for coherent scattering of waves from a large crystal lattice. It describes how the superposition of wave fronts scattered by lattice planes leads to a strict relation between the ...

  9. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    List of refractive indices. Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.