enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cylinder stress - Wikipedia

    en.wikipedia.org/wiki/Cylinder_stress

    In thick-walled cylinders, the maximum shear stress at any point is given by half of the algebraic difference between the maximum and minimum stresses, which is, therefore, equal to half the difference between the hoop and radial stresses. The shearing stress reaches a maximum at the inner surface, which is significant because it serves as a ...

  3. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    Shear stress (often denoted by τ, Greek: tau) is the component of stress coplanar with a material cross section. It arises from the shear force, the component of force vector parallel to the material cross section. Normal stress, on the other hand, arises from the force vector component perpendicular to the material cross section on which it acts.

  4. Contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Contact_mechanics

    Hertzian contact stress refers to the localized stresses that develop as two curved surfaces come in contact and deform slightly under the imposed loads. This amount of deformation is dependent on the modulus of elasticity of the material in contact. It gives the contact stress as a function of the normal contact force, the radii of curvature ...

  5. Stress (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Stress_(mechanics)

    In continuum mechanics, stress is a physical quantity that describes forces present during deformation. For example, an object being pulled apart, such as a stretched elastic band, is subject to tensile stress and may undergo elongation. An object being pushed together, such as a crumpled sponge, is subject to compressive stress and may undergo ...

  6. Torsion (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Torsion_(mechanics)

    The shear stress at a point within a shaft is: = Note that the highest shear stress occurs on the surface of the shaft, where the radius is maximum. High stresses at the surface may be compounded by stress concentrations such as rough spots. Thus, shafts for use in high torsion are polished to a fine surface finish to reduce the maximum stress ...

  7. Shear rate - Wikipedia

    en.wikipedia.org/wiki/Shear_rate

    The shear rate for a fluid flowing between two parallel plates, one moving at a constant speed and the other one stationary (Couette flow), is defined by. where: γ ˙ {\displaystyle {\dot {\gamma }}} is the shear rate, measured in reciprocal seconds; v is the velocity of the moving plate, measured in meters per second; h is the distance ...

  8. Shear modulus - Wikipedia

    en.wikipedia.org/wiki/Shear_modulus

    G = τ / γ = E / [2 (1 + ν)] Shear strain. In materials science, shear modulus or modulus of rigidity, denoted by G, or sometimes S or μ, is a measure of the elastic shear stiffness of a material and is defined as the ratio of shear stress to the shear strain: [1] where. = shear stress. is the force which acts. is the area on which the force ...

  9. Shear flow - Wikipedia

    en.wikipedia.org/wiki/Shear_flow

    Unlike in solid mechanics where shear flow is the shear stress force per unit length, in fluid mechanics, shear flow (or shearing flow) refers to adjacent layers of fluid moving parallel to each other with different speeds. Viscous fluids resist this shearing motion. For a Newtonian fluid, the stress exerted by the fluid in resistance to the ...