Search results
Results from the WOW.Com Content Network
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
This is known as the Page curve; and the time corresponding to the maximum or turnover point of the curve, which occurs at about half the black-hole lifetime, is called the Page time. [20] In short, if black hole evaporation is unitary, then the radiation entanglement entropy follows the Page curve.
That black hole would be entangled, and thus connected via wormhole, with the original black hole. That trick transformed a confusing mess of Hawking particles—paradoxically entangled with both a black hole and each other—into two black holes connected by a wormhole.
The Bekenstein–Hawking entropy is a statement about the gravitational entropy of a system; however, there is another type of entropy that is important in quantum information theory, namely the entanglement (or von Neumann) entropy. This form of entropy provides a measure of how far from a pure state a given quantum state is, or, equivalently ...
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
The entropy of entanglement (or entanglement entropy) is a measure of the degree of quantum entanglement between two subsystems constituting a two-part composite quantum system. Given a pure bipartite quantum state of the composite system, it is possible to obtain a reduced density matrix describing knowledge of the state of a subsystem.
The entropy of a black hole is proportional to the surface area of the black hole's event horizon. [92] [93] [94] Jacob Bekenstein and Stephen Hawking have shown that black holes have the maximum possible entropy of any object of equal size.
The physical entropy may be on a "per quantity" basis (h) which is called "intensive" entropy instead of the usual total entropy which is called "extensive" entropy. The "shannons" of a message ( Η ) are its total "extensive" information entropy and is h times the number of bits in the message.