Search results
Results from the WOW.Com Content Network
According to the IAU's explicit count, there are eight planets in the Solar System; four terrestrial planets (Mercury, Venus, Earth, and Mars) and four giant planets, which can be divided further into two gas giants (Jupiter and Saturn) and two ice giants (Uranus and Neptune). When excluding the Sun, the four giant planets account for more than ...
Animation of Saturn and the Solar System's outer planets orbiting around the Sun Simulated appearance of Saturn as seen from Earth (at opposition) during an orbit of Saturn, 2001–2029. The average distance between Saturn and the Sun is over 1.4 billion kilometers (9 AU). With an average orbital speed of 9.68 km/s, [6] it takes Saturn 10,759 ...
Many trans-Neptunian objects (TNOs) have been discovered; in many cases their positions in this list are approximate, as there is frequently a large uncertainty in their estimated diameters due to their distance from Earth. Solar System objects more massive than 10 21 kilograms are known or expected to be approximately spherical.
The term "unit distance" is also used for the length (A). From this definition, the mean distance of Earth from the Sun works out to 1.000 000 03 au, but with perturbations by the other planets, which do not average to zero over time, the average distance is 1.000 000 20 au. [6]
The standard gravitational parameter μ of a celestial body is the product of the gravitational constant G and the mass M of that body. For two bodies, the parameter may be expressed as G(m 1 + m 2), or as GM when one body is much larger than the other: = (+).
The Saturn-mass planet HD 149026 b has only two-thirds of Saturn's radius, so it may have a rock–ice core of 60 Earth masses or more. [39] CoRoT-20b has 4.24 times Jupiter's mass but a radius of only 0.84 that of Jupiter; it may have a metal core of 800 Earth masses if the heavy elements are concentrated in the core, or a core of 300 Earth ...
NASA's Cassini spacecraft, which explored Saturn and its icy moons, including the majestic Titan, ended its mission with a death plunge into the giant ringed planet in 2017.
A white dwarf's surface gravity is around 100,000 g (10 6 m/s 2) whilst the neutron star's compactness gives it a surface gravity of up to 7 × 10 12 m/s 2 with typical values of order 10 12 m/s 2 (that is more than 10 11 times that of Earth). One measure of such immense gravity is that neutron stars have an escape velocity of around 100,000 km ...