enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  3. List of mathematical series - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_series

    An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.

  4. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    Greek mathematician Archimedes produced the first known summation of an infinite series with a method that is still used in the area of calculus today. He used the method of exhaustion to calculate the area under the arc of a parabola with the summation of an infinite series, [5] and gave a remarkably accurate approximation of π. [80] [81]

  5. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is

  6. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function and the Fourier coefficients of the J-invariant (OEIS: A000521): ∑ n = − 1 ∞ j n q n = 256 ( 1 − z + z 2 ) 3 z 2 ( 1 − z ) 2 , {\displaystyle \sum _{n=-1}^{\infty }\mathrm {j} _{n}q^{n}=256{\dfrac {(1-z+z^{2})^{3}}{z ...

  7. Generating function - Wikipedia

    en.wikipedia.org/wiki/Generating_function

    The ordinary generating function of a sequence can be expressed as a rational function (the ratio of two finite-degree polynomials) if and only if the sequence is a linear recursive sequence with constant coefficients; this generalizes the examples above. Conversely, every sequence generated by a fraction of polynomials satisfies a linear ...

  8. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  9. Viète's formula - Wikipedia

    en.wikipedia.org/wiki/Viète's_formula

    A sequence of regular polygons with numbers of sides equal to powers of two, inscribed in a circle. The ratios between areas or perimeters of consecutive polygons in the sequence give the terms of Viète's formula. Viète obtained his formula by comparing the areas of regular polygons with 2 n and 2 n + 1 sides inscribed in a circle.