Search results
Results from the WOW.Com Content Network
The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.
Likelihood ratios in diagnostic testing. In evidence-based medicine, likelihood ratios are used for assessing the value of performing a diagnostic test. They use the sensitivity and specificity of the test to determine whether a test result usefully changes the probability that a condition (such as a disease state) exists.
In statistics, Wilks' theorem offers an asymptotic distribution of the log-likelihood ratio statistic, which can be used to produce confidence intervals for maximum-likelihood estimates or as a test statistic for performing the likelihood-ratio test. Statistical tests (such as hypothesis testing) generally require knowledge of the probability ...
Neyman–Pearson lemma. In statistics, the Neyman–Pearson lemma describes the existence and uniqueness of the likelihood ratio as a uniformly most powerful test in certain contexts. It was introduced by Jerzy Neyman and Egon Pearson in a paper in 1933. [1] The Neyman–Pearson lemma is part of the Neyman–Pearson theory of statistical ...
G. -test. In statistics, G-tests are likelihood-ratio or maximum likelihood statistical significance tests that are increasingly being used in situations where chi-squared tests were previously recommended. [1]
Pearson's chi-squared test or Pearson's test is a statistical test applied to sets of categorical data to evaluate how likely it is that any observed difference between the sets arose by chance. It is the most widely used of many chi-squared tests (e.g., Yates , likelihood ratio , portmanteau test in time series , etc.) – statistical ...
Vuong's closeness test. In statistics, the Vuong closeness test is a likelihood-ratio -based test for model selection using the Kullback–Leibler information criterion. This statistic makes probabilistic statements about two models. They can be nested, strictly non-nested or partially non-nested (also called overlapping).
The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.