enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ratio test - Wikipedia

    en.wikipedia.org/wiki/Ratio_test

    In mathematics, the ratio test is a test (or "criterion") for the convergence of a series =, where each term is a real or complex number and a n is nonzero when n is large. The test was first published by Jean le Rond d'Alembert and is sometimes known as d'Alembert's ratio test or as the Cauchy ratio test.

  3. Likelihood-ratio test - Wikipedia

    en.wikipedia.org/wiki/Likelihood-ratio_test

    The likelihood-ratio test, also known as Wilks test, [2] is the oldest of the three classical approaches to hypothesis testing, together with the Lagrange multiplier test and the Wald test. [3] In fact, the latter two can be conceptualized as approximations to the likelihood-ratio test, and are asymptotically equivalent.

  4. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    If r = 1, the root test is inconclusive, and the series may converge or diverge. The root test is stronger than the ratio test: whenever the ratio test determines the convergence or divergence of an infinite series, the root test does too, but not conversely. [1]

  5. Wilks' theorem - Wikipedia

    en.wikipedia.org/wiki/Wilks'_theorem

    To be clear: These limitations on Wilks’ theorem do not negate any power properties of a particular likelihood ratio test. [3] The only issue is that a χ 2 {\displaystyle \chi ^{2}} distribution is sometimes a poor choice for estimating the statistical significance of the result.

  6. Sequential probability ratio test - Wikipedia

    en.wikipedia.org/wiki/Sequential_probability...

    The sequential probability ratio test (SPRT) is a specific sequential hypothesis test, developed by Abraham Wald [1] and later proven to be optimal by Wald and Jacob Wolfowitz. [2] Neyman and Pearson's 1933 result inspired Wald to reformulate it as a sequential analysis problem.

  7. Likelihood ratios in diagnostic testing - Wikipedia

    en.wikipedia.org/wiki/Likelihood_ratios_in...

    In fact, post-test probability, as estimated from the likelihood ratio and pre-test probability, is generally more accurate than if estimated from the positive predictive value of the test, if the tested individual has a different pre-test probability than what is the prevalence of that condition in the population.

  8. Ratio estimator - Wikipedia

    en.wikipedia.org/wiki/Ratio_estimator

    The ratio estimator is a statistical estimator for the ratio of means of two random variables. Ratio estimates are biased and corrections must be made when they are used in experimental or survey work. The ratio estimates are asymmetrical and symmetrical tests such as the t test should not be used to generate confidence intervals.

  9. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    The likelihood ratio is central to likelihoodist statistics: the law of likelihood states that degree to which data (considered as evidence) supports one parameter value versus another is measured by the likelihood ratio. In frequentist inference, the likelihood ratio is the basis for a test statistic, the so-called likelihood-ratio test.