Search results
Results from the WOW.Com Content Network
This convention means that temperature and energy quantities have the same dimensions. [51] [52] In particular, the SI unit kelvin becomes superfluous, being defined in terms of joules as 1 K = 1.380 649 × 10 −23 J. [53] With this convention, temperature is always given in units of energy, and the kelvin unit is not explicitly needed in ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.
This is a collection of temperature conversion formulas and comparisons among eight different temperature scales, several of which have long been obsolete.. Temperatures on scales that either do not share a numeric zero or are nonlinearly related cannot correctly be mathematically equated (related using the symbol =), and thus temperatures on different scales are more correctly described as ...
Color temperature is a parameter describing the color of a ... as a function of the kelvin temperature, ... to an increase of color temperature with water depth in ...
A unit increment of one kelvin is exactly 1.8 times one degree Rankine; thus, to convert a specific temperature on the Kelvin scale to the Rankine scale, x K = 1.8 x °R, and to convert from a temperature on the Rankine scale to the Kelvin scale, x °R = x /1.8 K. Consequently, absolute zero is "0" for both scales, but the melting point of ...
Since the standardization of the kelvin in the International System of Units, it has subsequently been redefined in terms of the equivalent fixing points on the Kelvin scale, so that a temperature increment of one degree Celsius is the same as an increment of one kelvin, though numerically the scales differ by an exact offset of 273.15.
Infinite temperature (coldness zero) is shown at the top of the diagram; positive values of coldness/temperature are on the right-hand side, negative values on the left-hand side. Certain systems can achieve negative thermodynamic temperature; that is, their temperature can be expressed as a negative quantity on the Kelvin or Rankine scales.