enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fatigue (material) - Wikipedia

    en.wikipedia.org/wiki/Fatigue_(material)

    Fatigue has traditionally been associated with the failure of metal components which led to the term metal fatigue. In the nineteenth century, the sudden failing of metal railway axles was thought to be caused by the metal crystallising because of the brittle appearance of the fracture surface, but this has since been disproved. [ 1 ]

  3. Corrosion fatigue - Wikipedia

    en.wikipedia.org/wiki/Corrosion_fatigue

    In true corrosion fatigue, the fatigue-crack-growth rate is enhanced by corrosion; this effect is seen in all three regions of the fatigue-crack growth-rate diagram. The diagram on the left is a schematic of crack-growth rate under true corrosion fatigue; the curve shifts to a lower stress-intensity-factor range in the corrosive environment.

  4. Slip bands in metals - Wikipedia

    en.wikipedia.org/wiki/Slip_bands_in_metals

    PSB structure (adopted from [7]). Persistent slip-bands (PSBs) are associated with strain localisation due to fatigue in metals and cracking on the same plane. Transmission electron microscopy (TEM) and three-dimensional discrete dislocation dynamics (DDD [8]) simulation were used to reveal and understand dislocations type and arrangement/patterns to relate it to the sub-surface structure.

  5. Striation (fatigue) - Wikipedia

    en.wikipedia.org/wiki/Striation_(fatigue)

    Scanning electron microscope image of fatigue striations produced from constant amplitude loading. The crack is growing from left to right. Striations are marks produced on the fracture surface that show the incremental growth of a fatigue crack. A striation marks the position of the crack tip at the time it was made.

  6. Rolling contact fatigue - Wikipedia

    en.wikipedia.org/wiki/Rolling_contact_fatigue

    It is the result of the process of fatigue due to rolling/sliding contact. [2] [3] The RCF process begins with cyclic loading of the material, which results in fatigue damage that can be observed in crack-like flaws, like white etching cracks. [2] These flaws can grow into larger cracks under further loading, potentially leading to fractures ...

  7. Stress corrosion cracking - Wikipedia

    en.wikipedia.org/wiki/Stress_corrosion_cracking

    mild steel cracks in the presence of alkali (e.g. boiler cracking and caustic stress corrosion cracking) and nitrates; copper alloys crack in ammoniacal solutions (season cracking); high-tensile steels have been known to crack in an unexpectedly brittle manner in a whole variety of aqueous environments, especially when chlorides are present.

  8. Notch (engineering) - Wikipedia

    en.wikipedia.org/wiki/Notch_(engineering)

    In structural components, a notch causes a stress concentration which can result in the initiation and growth of fatigue cracks. Notches are used in materials characterization to determine fracture mechanics related properties such as fracture toughness and rates of fatigue crack growth.

  9. Intergranular fracture - Wikipedia

    en.wikipedia.org/wiki/Intergranular_fracture

    Intergranular fatigue fracture involves cases in which the integranular fracture occurs as a result of cyclic loading, or fatigue. This specific type of intergranular fracture is often associated with improper materials processing or harsh environmental conditions where the grains are severely weakened. [ 6 ]