enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gas constant - Wikipedia

    en.wikipedia.org/wiki/Gas_constant

    The gas constant occurs in the ideal gas law: = = where P is the absolute pressure, V is the volume of gas, n is the amount of substance, m is the mass, and T is the thermodynamic temperature. R specific is the mass-specific gas constant. The gas constant is expressed in the same unit as molar heat.

  3. Heat capacity ratio - Wikipedia

    en.wikipedia.org/wiki/Heat_capacity_ratio

    For example, terrestrial air is primarily made up of diatomic gases (around 78% nitrogen, N 2, and 21% oxygen, O 2), and at standard conditions it can be considered to be an ideal gas. The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of ...

  4. Stefan–Boltzmann law - Wikipedia

    en.wikipedia.org/wiki/Stefan–Boltzmann_law

    This approximation reduces the temperature by a factor of 0.7 1/4, giving 255 K (−18 °C; −1 °F). [ 28 ] [ 29 ] The above temperature is Earth's as seen from space, not ground temperature but an average over all emitting bodies of Earth from surface to high altitude.

  5. Avogadro constant - Wikipedia

    en.wikipedia.org/wiki/Avogadro_constant

    The Avogadro constant, commonly denoted N A [1] or L, [2] is an SI defining constant with an exact value of 6.022 140 76 × 10 23 mol −1 (reciprocal moles). [3] [4] It defines the number of constituent particles in one mole, where the particles in question can be either molecules, atoms, ions, ion pairs, or any other elementary entities.

  6. Carbon dioxide - Wikipedia

    en.wikipedia.org/wiki/Carbon_dioxide

    The symmetry of a carbon dioxide molecule is linear and centrosymmetric at its equilibrium geometry. The length of the carbon–oxygen bond in carbon dioxide is 116.3 pm, noticeably shorter than the roughly 140 pm length of a typical single C–O bond, and shorter than most other C–O multiply bonded functional groups such as carbonyls. [19]

  7. Radiative forcing - Wikipedia

    en.wikipedia.org/wiki/Radiative_forcing

    Radiative forcing is defined in the IPCC Sixth Assessment Report as follows: "The change in the net, downward minus upward, radiative flux (expressed in W/m 2) due to a change in an external driver of climate change, such as a change in the concentration of carbon dioxide (CO 2), the concentration of volcanic aerosols or the output of the Sun." [3]: 2245

  8. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    Black had placed equal masses of ice at 32 °F (0 °C) and water at 33 °F (0.6 °C) respectively in two identical, well separated containers. The water and the ice were both evenly heated to 40 °F by the air in the room, which was at a constant 47 °F (8 °C). The water had therefore received 40 – 33 = 7 “degrees of heat”.

  9. Mass–energy equivalence - Wikipedia

    en.wikipedia.org/wiki/Mass–energy_equivalence

    [70] [71] American physical chemists Gilbert N. Lewis and Richard C. Tolman used two variations of the formula in 1909: m = ⁠ E / c 2 ⁠ and m 0 = ⁠ E 0 / c 2 ⁠, with E being the relativistic energy (the energy of an object when the object is moving), E 0 is the rest energy (the energy when not moving), m is the relativistic mass (the ...