Search results
Results from the WOW.Com Content Network
Gravitational time dilation is a form of time dilation, an actual difference of elapsed time between two events, as measured by observers situated at varying distances from a gravitating mass. The lower the gravitational potential (the closer the clock is to the source of gravitation), the slower time passes, speeding up as the gravitational ...
In astrophysics, an event horizon is a boundary beyond which events cannot affect an outside observer. Wolfgang Rindler coined the term in the 1950s. [1]In 1784, John Michell proposed that gravity can be strong enough in the vicinity of massive compact objects that even light cannot escape. [2]
Gravity is usually measured in units of acceleration.In the SI system of units, the standard unit of acceleration is metres per second squared (m/s 2).Other units include the cgs gal (sometimes known as a galileo, in either case with symbol Gal), which equals 1 centimetre per second squared, and the g (g n), equal to 9.80665 m/s 2.
Conversely, as two massive objects move towards each other, the motion accelerates under gravity causing an increase in the (positive) kinetic energy of the system and, in order to conserve the total sum of energy, the increase of the same amount in the gravitational potential energy of the object is treated as negative. [1]
Ball falling to the floor in an accelerating rocket (left) and on Earth (right). The effect is identical. Most effects of gravity vanish in free fall, but effects that seem the same as those of gravity can be produced by an accelerated frame of reference. An observer in a closed room cannot tell which of the following two scenarios is true:
The gravity anomaly, or "gravity hole", is centered southwest of Sri Lanka and Kanyakumari, the southernmost tip of mainland India, and east of the Horn of Africa.Due to weaker local gravity, the sea level in the IOGL would be up to 106 m (348 ft) lower than the global mean sea level (reference ellipsoid), if not for minor effects such as tides and currents in the Indian Ocean.
With the most accurate pendulum clocks, even moving the clock to the top of a tall building would cause it to lose measurable time due to lower gravity. [29] The local gravity also varies by about 0.5% with latitude between the equator and the poles, with gravity increasing at higher latitudes due to the oblate shape of the Earth.
The strong equivalence principle can be tested by 1) finding orbital variations in massive bodies (Sun-Earth-Moon), 2) variations in the gravitational constant (G) depending on nearby sources of gravity or on motion, or 3) searching for a variation of Newton's gravitational constant over the life of the universe [14]: 47