Search results
Results from the WOW.Com Content Network
In reliability problems, the expected lifetime is called the mean time to failure, and the expected future lifetime is called the mean residual lifetime. As the probability of an individual surviving until age t or later is S ( t ), by definition, the expected number of survivors at age t out of an initial population of n newborns is n × S ( t ...
However, formal psychometric analysis, called item analysis, is considered the most effective way to increase reliability. This analysis consists of computation of item difficulties and item discrimination indices, the latter index involving computation of correlations between the items and sum of the item scores of the entire test.
The graphs below show examples of hypothetical survival functions. The x-axis is time. The y-axis is the proportion of subjects surviving. The graphs show the probability that a subject will survive beyond time t. Four survival functions. For example, for survival function 1, the probability of surviving longer than t = 2 months is 0.37. That ...
THERP is a first-generation methodology, which means that its procedures follow the way conventional reliability analysis models a machine. [3] The technique was developed in the Sandia Laboratories for the US Nuclear Regulatory Commission. [4] Its primary author is Swain, who developed the THERP methodology gradually over a lengthy period. [2]
A variety of methods exist for human reliability analysis (HRA). [ 3 ] [ 4 ] Two general classes of methods are those based on probabilistic risk assessment (PRA) and those based on a cognitive theory of control .
GPR is a Bayesian non-linear regression method. A Gaussian process (GP) is a collection of random variables, any finite number of which have a joint Gaussian (normal) distribution. A GP is defined by a mean function and a covariance function, which specify the mean vectors and covariance matrices for each finite collection of the random variables.
Reliability engineering is a sub-discipline of systems engineering that emphasizes the ability of equipment to function without failure. Reliability is defined as the probability that a product, system, or service will perform its intended function adequately for a specified period of time, OR will operate in a defined environment without failure. [1]
Reproducibility, closely related to replicability and repeatability, is a major principle underpinning the scientific method.For the findings of a study to be reproducible means that results obtained by an experiment or an observational study or in a statistical analysis of a data set should be achieved again with a high degree of reliability when the study is replicated.