Search results
Results from the WOW.Com Content Network
Potential energy is the energy by virtue of an object's position relative to other objects. [5] Potential energy is often associated with restoring forces such as a spring or the force of gravity. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The table is color-coded to show the chemical groupings. Small symbols pack in additional information: solid/liquid/gas, the color of an element, common in the human body, common in the earth's crust, magnetic metals, noble metals, radioactive, and rare or never found in nature.
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
The negative-energy particle then crosses the event horizon into the black hole, with the law of conservation of energy requiring that an equal amount of positive energy should escape. In the Penrose process , a body divides in two, with one half gaining negative energy and falling in, while the other half gains an equal amount of positive ...
differential vector element of surface area A, with infinitesimally small magnitude and direction normal to surface S: square meter (m 2) differential element of volume V enclosed by surface S: cubic meter (m 3) electric field: newton per coulomb (N⋅C −1), or equivalently, volt per meter (V⋅m −1)
This is a list of potential energy functions that are frequently used in quantum mechanics and have any meaning. One-dimensional potentials
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.