Search results
Results from the WOW.Com Content Network
Potential energy is the energy by virtue of an object's position relative to other objects. [5] Potential energy is often associated with restoring forces such as a spring or the force of gravity. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential.
potential energy: joule (J) internal energy: joule (J) relativistic mass: kilogram (kg) energy density: joule per cubic meter (J/m 3) specific energy: joule per kilogram (J/kg) voltage also called electric potential difference volt (V) volume: cubic meter (m 3) shear force: velocity: meter per second (m/s)
This is a list of potential energy functions that are frequently used in quantum mechanics and have any meaning. One-dimensional potentials
A chemical element, often simply called an element, is a type of atom which has a specific number of protons in its atomic nucleus (i.e., a specific atomic number, or Z). [ 1 ] The definitive visualisation of all 118 elements is the periodic table of the elements , whose history along the principles of the periodic law was one of the founding ...
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
Familiar examples of such processes include nucleosynthesis, a process ultimately using the gravitational potential energy released from the gravitational collapse of supernovae to "store" energy in the creation of heavy isotopes (such as uranium and thorium), and nuclear decay, a process in which energy is released that was originally stored ...
For example, the working fluid in a steam engine sitting on top of Mount Everest has higher total energy due to gravity than it has at the bottom of the Mariana Trench, but the same thermodynamic potentials. This is because the gravitational potential energy belongs to the total energy rather than to thermodynamic potentials such as internal ...
The electrostatic potential energy U E stored in a system of two charges is equal to the electrostatic potential energy of a charge in the electrostatic potential generated by the other. That is to say, if charge q 1 generates an electrostatic potential V 1 , which is a function of position r , then U E = q 2 V 1 ( r 2 ) . {\displaystyle U ...