Search results
Results from the WOW.Com Content Network
The nitrate ion carries a formal charge of −1. [citation needed] This charge results from a combination formal charge in which each of the three oxygens carries a − 2 ⁄ 3 charge, [citation needed] whereas the nitrogen carries a +1 charge, all these adding up to formal charge of the polyatomic nitrate ion.
The recommended maximum limits by the World Health Organization in drinking water are 3 mg L −1 and 50 mg L −1 for nitrite and nitrate ions, respectively. [18] Ingesting too much nitrite and/or nitrate through well water is suspected to cause methemoglobinemia. [19]
Ammonium nitrate decomposition (as monopropellant) 1.4: 2.5: Thermal Energy Capacity of Molten Salt: 1 [citation needed] 98% [18] Molecular spring approximate [citation needed] 1: battery, Lithium–Manganese [19] [20] 0.83-1.01: 1.98-2.09: battery, Sodium–Sulfur: 0.72 [21] 1.23 [citation needed] 85% [22] battery, Lithium-ion [23] [24] 0.46-0 ...
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins , amino acids and adenosine triphosphate .
Chromium(III) nitrate describes several inorganic compounds consisting of chromium, nitrate and varying amounts of water. Most common is the dark violet hygroscopic solid. An anhydrous green form is also known. Chromium(III) nitrate compounds are of a limited commercial importance, finding some applications in the dyeing industry. [2]
A common nitrate test, known as the brown ring test [2] can be performed by adding iron(II) sulfate to a solution of a nitrate, then slowly adding concentrated sulfuric acid such that the acid forms a layer below the aqueous solution. A brown ring will form at the junction of the two layers, indicating the presence of the nitrate ion. [3]
The parameters may be derived from various experimental data such as the osmotic coefficient, mixed ion activity coefficients, and salt solubility. They can be used to calculate mixed ion activity coefficients and water activities in solutions of high ionic strength for which the Debye–Hückel theory is no longer adequate.