Search results
Results from the WOW.Com Content Network
Given a pre-Hilbert space , an orthonormal basis for is an orthonormal set of vectors with the property that every vector in can be written as an infinite linear combination of the vectors in the basis. In this case, the orthonormal basis is sometimes called a Hilbert basis for . Note that an orthonormal basis in this sense is not generally a ...
The Gram-Schmidt theorem, together with the axiom of choice, guarantees that every vector space admits an orthonormal basis. This is possibly the most significant use of orthonormality, as this fact permits operators on inner-product spaces to be discussed in terms of their action on the space's orthonormal basis vectors. What results is a deep ...
Despite the name, an orthonormal basis is not, in general, a basis in the sense of linear algebra (Hamel basis). More precisely, an orthonormal basis is a Hamel basis if and only if the Hilbert space is a finite-dimensional vector space. [90] Completeness of an orthonormal system of vectors of a Hilbert space can be equivalently restated as:
In linear algebra, an orthogonal matrix, or orthonormal matrix, is a real square matrix whose columns and rows are orthonormal vectors. One way to express this is Q T Q = Q Q T = I , {\displaystyle Q^{\mathrm {T} }Q=QQ^{\mathrm {T} }=I,} where Q T is the transpose of Q and I is the identity matrix .
In mathematics, particularly linear algebra, an orthogonal basis for an inner product space is a basis for whose vectors are mutually orthogonal. If the vectors of an orthogonal basis are normalized , the resulting basis is an orthonormal basis .
The first two steps of the Gram–Schmidt process. In mathematics, particularly linear algebra and numerical analysis, the Gram–Schmidt process or Gram-Schmidt algorithm is a way of finding a set of two or more vectors that are perpendicular to each other.
The tangent, normal, and binormal unit vectors, often called T, N, and B, or collectively the Frenet–Serret frame (TNB frame or TNB basis), together form an orthonormal basis that spans, and are defined as follows: T is the unit vector tangent to the curve, pointing in the direction of motion.
In finite-dimensional spaces, the matrix representation (with respect to an orthonormal basis) of an orthogonal transformation is an orthogonal matrix. Its rows are mutually orthogonal vectors with unit norm, so that the rows constitute an orthonormal basis of V. The columns of the matrix form another orthonormal basis of V.