enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Speed of gravity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_gravity

    Speed of gravity; Exact values; metres per second: 299 792 458: Approximate values (to three significant digits) kilometres per hour: 1 080 000 000: miles per second: 186 000: miles per hour [1] 671 000 000: astronomical units per day: 173 [Note 1] parsecs per year: 0.307 [Note 2] Approximate light signal travel times; Distance: Time: one foot ...

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    In combination, the equatorial bulge and the effects of the surface centrifugal force due to rotation mean that sea-level gravity increases from about 9.780 m/s 2 at the Equator to about 9.832 m/s 2 at the poles, so an object will weigh approximately 0.5% more at the poles than at the Equator. [2] [10]

  4. Standard gravity - Wikipedia

    en.wikipedia.org/wiki/Standard_gravity

    The standard acceleration of gravity or standard acceleration of free fall, often called simply standard gravity and denoted by ɡ 0 or ɡ n, is the nominal gravitational acceleration of an object in a vacuum near the surface of the Earth. It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2).

  5. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    One g is the force per unit mass due to gravity at the Earth's surface and is the standard gravity (symbol: g n), defined as 9.806 65 metres per second squared, [5] or equivalently 9.806 65 newtons of force per kilogram of mass. The unit definition does not vary with location—the g-force when standing on the Moon is almost exactly 1 ⁄ 6 that

  6. Gravitational time dilation - Wikipedia

    en.wikipedia.org/wiki/Gravitational_time_dilation

    For example, considered over the total time-span of Earth (4.6 billion years), a clock set in a geostationary position at an altitude of 9,000 meters above sea level, such as perhaps at the top of Mount Everest (prominence 8,848 m), would be about 39 hours ahead of a clock set at sea level.

  7. Sea level - Wikipedia

    en.wikipedia.org/wiki/Sea_level

    A common and relatively straightforward mean sea-level standard is instead a long-term average of tide gauge readings at a particular reference location. [1] The term above sea level generally refers to the height above mean sea level (AMSL). The term APSL means above present sea level, comparing sea levels in the past with the level today.

  8. Standard sea-level conditions - Wikipedia

    en.wikipedia.org/wiki/Standard_sea-level_conditions

    Standard sea-level conditions (SSL), [1] also known as sea-level standard (SLS), defines a set of atmospheric conditions for physical calculations. The term "standard sea level " is used to indicate that values of properties are to be taken to be the same as those standard at sea level, and is done to define values for use in general calculations.

  9. Geopotential height - Wikipedia

    en.wikipedia.org/wiki/Geopotential_height

    Geopotential height or geopotential altitude is a vertical coordinate referenced to Earth's mean sea level (assumed zero geopotential) that represents the work involved in lifting one unit of mass over one unit of length through a hypothetical space in which the acceleration of gravity is assumed constant. [1]