Search results
Results from the WOW.Com Content Network
Srinivasa Ramanujan mentioned the sums in a 1918 paper. [1] In addition to the expansions discussed in this article, Ramanujan's sums are used in the proof of Vinogradov's theorem that every sufficiently large odd number is the sum of three primes. [2]
The multiplicative inverse of its generating function is the Euler function; by Euler's pentagonal number theorem this function is an alternating sum of pentagonal number powers of its argument. Srinivasa Ramanujan first discovered that the partition function has nontrivial patterns in modular arithmetic , now known as Ramanujan's congruences .
Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...
1729 can be expressed as a sum of two positive cubes in two ways, illustrated geometrically. 1729 is also known as Ramanujan number or Hardy–Ramanujan number , named after an anecdote of the British mathematician G. H. Hardy when he visited Indian mathematician Srinivasa Ramanujan who was ill in a hospital.
Download as PDF; Printable version; From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Ramanujan's sum; Retrieved from " ...
It may be used to prove Nicomachus's theorem that the sum of the first cubes equals the square of the sum of the first positive integers. [2] Summation by parts is frequently used to prove Abel's theorem and Dirichlet's test.
Anthony Barboza/Getty Images Grammy-winning singer Roberta Flack, whose work includes “The First Time Ever I Saw Your Face” and “Killing Me Softly With His Song,” has died. A r ...
Its authors have divided Elementary Number Theory, Group Theory and Ramanujan Graphs into four chapters. The first of these provides background in graph theory, including material on the girth of graphs (the length of the shortest cycle), on graph coloring, and on the use of the probabilistic method to prove the existence of graphs for which both the girth and the number of colors needed are ...