enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dask (software) - Wikipedia

    en.wikipedia.org/wiki/Dask_(software)

    Dask is an open-source Python library for parallel computing.Dask [1] scales Python code from multi-core local machines to large distributed clusters in the cloud. Dask provides a familiar user interface by mirroring the APIs of other libraries in the PyData ecosystem including: Pandas, scikit-learn and NumPy.

  3. scikit-learn - Wikipedia

    en.wikipedia.org/wiki/Scikit-learn

    scikit-learn (formerly scikits.learn and also known as sklearn) is a free and open-source machine learning library for the Python programming language. [3] It features various classification, regression and clustering algorithms including support-vector machines, random forests, gradient boosting, k-means and DBSCAN, and is designed to interoperate with the Python numerical and scientific ...

  4. Symbolic regression - Wikipedia

    en.wikipedia.org/wiki/Symbolic_regression

    PySR, [20] symbolic regression environment written in Python and Julia, using regularized evolution, simulated annealing, and gradient-free optimization (free, open source) [21] GP-GOMEA , fast ( C++ back-end) evolutionary symbolic regression with Python scikit-learn -compatible interface, achieved one of the best trade-offs between accuracy ...

  5. k-nearest neighbors algorithm - Wikipedia

    en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

    In statistics, the k-nearest neighbors algorithm (k-NN) is a non-parametric supervised learning method. It was first developed by Evelyn Fix and Joseph Hodges in 1951, [1] and later expanded by Thomas Cover. [2]

  6. List of programming languages for artificial intelligence

    en.wikipedia.org/wiki/List_of_programming...

    Python is a high-level, general-purpose programming language that is popular in artificial intelligence. [1] It has a simple, flexible and easily readable syntax. [2] Its popularity results in a vast ecosystem of libraries, including for deep learning, such as PyTorch, TensorFlow, Keras, Google JAX.

  7. Oversampling and undersampling in data analysis - Wikipedia

    en.wikipedia.org/wiki/Oversampling_and_under...

    A variety of data re-sampling techniques are implemented in the imbalanced-learn package [1] compatible with the scikit-learn Python library. The re-sampling techniques are implemented in four different categories: undersampling the majority class, oversampling the minority class, combining over and under sampling, and ensembling sampling.

  8. Random sample consensus - Wikipedia

    en.wikipedia.org/wiki/Random_sample_consensus

    A simple example is fitting a line in two dimensions to a set of observations. Assuming that this set contains both inliers, i.e., points which approximately can be fitted to a line, and outliers, points which cannot be fitted to this line, a simple least squares method for line fitting will generally produce a line with a bad fit to the data including inliers and outliers.

  9. Linear regression - Wikipedia

    en.wikipedia.org/wiki/Linear_regression

    For example, linear regression can be used to predict the changing effects of car pollution. [31] One notable example of this application in infectious diseases is the flattening the curve strategy emphasized early in the COVID-19 pandemic, where public health officials dealt with sparse data on infected individuals and sophisticated models of ...