Search results
Results from the WOW.Com Content Network
Some models can reproduce the 100,000-year cycles as a result of non-linear interactions between small changes in the Earth's orbit and internal oscillations of the climate system. [ 30 ] [ 31 ] In particular, the mechanism of the stochastic resonance was originally proposed in order to describe this interaction.
Orbital forcing is the effect on climate of slow changes in the tilt of the Earth's axis and shape of the Earth's orbit around the Sun (see Milankovitch cycles).These orbital changes modify the total amount of sunlight reaching the Earth by up to 25% at mid-latitudes (from 400 to 500 W/(m 2) at latitudes of 60 degrees).
The effect of obliquity variations may, in concert with precession, be amplified by orbital inclination. As the 100,000-year periodicity only dominates the climate of the past million years, there is insufficient information to separate the component frequencies of eccentricity using spectral analysis, making the reliable detection of significant longer-term trends more difficult, although the ...
Ignoring the influence of other Solar System bodies, Earth's orbit, also called Earth's revolution, is an ellipse with the Earth–Sun barycenter as one focus with a current eccentricity of 0.0167. Since this value is close to zero, the center of the orbit is relatively close to the center of the Sun (relative to the size of the orbit).
Changes in the Earth's orbit affect the amount and distribution of sunlight the Earth and certain parts of the Earth receives. [1] Such changes are expected to introduce periodic climate changes on a time scale of 20-100 kyr. Long records of sedimentation or climate should record such variations.
The ancient Greek astronomer Hipparchus noted the apsidal precession of the Moon's orbit (as the revolution of the Moon's apogee with a period of approximately 8.85 years); [4] it is corrected for in the Antikythera Mechanism (circa 80 BCE) (with the supposed value of 8.88 years per full cycle, correct to within 0.34% of current measurements). [5]
A value of 0 is a circular orbit, values between 0 and 1 form an elliptic orbit, 1 is a parabolic escape orbit (or capture orbit), and greater than 1 is a hyperbola. The term derives its name from the parameters of conic sections , as every Kepler orbit is a conic section.
Radiative forcing is defined in the IPCC Sixth Assessment Report as follows: "The change in the net, downward minus upward, radiative flux (expressed in W/m 2) due to a change in an external driver of climate change, such as a change in the concentration of carbon dioxide (CO 2), the concentration of volcanic aerosols or the output of the Sun." [3]: 2245