enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Code-excited linear prediction - Wikipedia

    en.wikipedia.org/wiki/Code-excited_linear_prediction

    Code-excited linear prediction (CELP) is a linear predictive speech coding algorithm originally proposed by Manfred R. Schroeder and Bishnu S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction (RELP) and linear predictive coding (LPC) vocoders (e.g., FS-1015).

  3. Convolutional code - Wikipedia

    en.wikipedia.org/wiki/Convolutional_code

    A convolutional encoder is a discrete linear time-invariant system. Every output of an encoder can be described by its own transfer function, which is closely related to the generator polynomial. An impulse response is connected with a transfer function through Z-transform. Transfer functions for the first (non-recursive) encoder are:

  4. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    Encoder self-attention, block diagram Encoder self-attention, detailed diagram. Self-attention is essentially the same as cross-attention, except that query, key, and value vectors all come from the same model. Both encoder and decoder can use self-attention, but with subtle differences.

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    High-level schematic diagram of BERT. It takes in a text, tokenizes it into a sequence of tokens, add in optional special tokens, and apply a Transformer encoder. The hidden states of the last layer can then be used as contextual word embeddings. BERT is an "encoder-only" transformer architecture. At a high level, BERT consists of 4 modules:

  6. Transformer (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Transformer_(deep_learning...

    Like earlier seq2seq models, the original transformer model used an encoder-decoder architecture. The encoder consists of encoding layers that process all the input tokens together one layer after another, while the decoder consists of decoding layers that iteratively process the encoder's output and the decoder's output tokens so far.

  7. Block Truncation Coding - Wikipedia

    en.wikipedia.org/wiki/Block_Truncation_Coding

    This demonstrates that the algorithm is asymmetric in that the encoder has much more work to do than the decoder. This is because the decoder is simply replacing 1's and 0's with the estimated value whereas the encoder is also required to calculate the mean, standard deviation and the two values to use. [6]

  8. LZ77 and LZ78 - Wikipedia

    en.wikipedia.org/wiki/LZ77_and_LZ78

    To spot matches, the encoder must keep track of some amount of the most recent data, such as the last 2 KB, 4 KB, or 32 KB. The structure in which this data is held is called a sliding window, which is why LZ77 is sometimes called sliding-window compression. The encoder needs to keep this data to look for matches, and the decoder needs to keep ...

  9. Turbo code - Wikipedia

    en.wikipedia.org/wiki/Turbo_code

    This example encoder implementation describes a classic turbo encoder, and demonstrates the general design of parallel turbo codes. This encoder implementation sends three sub-blocks of bits. The first sub-block is the m -bit block of payload data.