Search results
Results from the WOW.Com Content Network
Nucleic acids consist of a chain of linked units called nucleotides. Each nucleotide consists of three subunits: a phosphate group and a sugar (ribose in the case of RNA, deoxyribose in DNA) make up the backbone of the nucleic acid strand, and attached to the sugar is one of a set of nucleobases.
This method of sequencing utilizes binding characteristics of a library of short single stranded DNA molecules (oligonucleotides), also called DNA probes, to reconstruct a target DNA sequence. Non-specific hybrids are removed by washing and the target DNA is eluted. [147] Hybrids are re-arranged such that the DNA sequence can be reconstructed.
The term "repeated sequence" was first used by Roy John Britten and D. E. Kohne in 1968; they found out that more than half of the eukaryotic genomes were repetitive DNA through their experiments on reassociation of DNA. [5] Although the repetitive DNA sequences were conserved and ubiquitous, their biological role was yet unknown.
Pages in category "Repetitive DNA sequences" The following 42 pages are in this category, out of 42 total. This list may not reflect recent changes. ...
Saccharomyces cerevisiae was the first eukaryotic organism to have its complete genome sequence determined.. This list of "sequenced" eukaryotic genomes contains all the eukaryotes known to have publicly available complete nuclear and organelle genome sequences that have been sequenced, assembled, annotated and published; draft genomes are not included, nor are organelle-only sequences.
The human genome is a complete set of nucleic acid sequences for humans, encoded as the DNA within each of the 23 distinct chromosomes in the cell nucleus. A small DNA molecule is found within individual mitochondria.
This list of sequenced animal genomes contains animal species for which complete genome sequences have been assembled, annotated and published. Substantially complete draft genomes are included, but not partial genome sequences or organelle-only sequences. For all kingdoms, see the list of sequenced genomes.
Many LCRs are concentrated in "hotspots", such as the 17p11-12 region, 27% of which is composed of LCR sequence. NAHR and non-homologous end joining (NHEJ) within this region are responsible for a wide range of disorders, including Charcot–Marie–Tooth syndrome type 1A , [ 5 ] hereditary neuropathy with liability to pressure palsies , [ 5 ...