Search results
Results from the WOW.Com Content Network
Axiom schema of replacement: the image [] of the domain set under the definable class function is itself a set, . Suppose P {\displaystyle P} is a definable binary relation (which may be a proper class ) such that for every set x {\displaystyle x} there is a unique set y {\displaystyle y} such that P ( x , y ) {\displaystyle P(x,y)} holds.
1. Naive set theory can mean set theory developed non-rigorously without axioms 2. Naive set theory can mean the inconsistent theory with the axioms of extensionality and comprehension 3. Naive set theory is an introductory book on set theory by Halmos natural The natural sum and natural product of ordinals are the Hessenberg sum and product NCF
The image of the function is the set of all output values it may produce, that is, the image of . The preimage of f {\displaystyle f} , that is, the preimage of Y {\displaystyle Y} under f {\displaystyle f} , always equals X {\displaystyle X} (the domain of f {\displaystyle f} ); therefore, the former notion is rarely used.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
In set theory and related branches of mathematics, a family (or collection) can mean, depending upon the context, any of the following: set, indexed set, multiset, or class. A collection F {\displaystyle F} of subsets of a given set S {\displaystyle S} is called a family of subsets of S {\displaystyle S} , or a family of sets over S ...
In mathematics, an algebraic structure or algebraic system [1] consists of a nonempty set A (called the underlying set, carrier set or domain), a collection of operations on A (typically binary operations such as addition and multiplication), and a finite set of identities (known as axioms) that these operations must satisfy.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
In mathematics, a structure on a set (or on some sets) refers to providing it (or them) with certain additional features (e.g. an operation, relation, metric, or topology). Τhe additional features are attached or related to the set (or to the sets), so as to provide it (or them) with some additional meaning or significance.