Search results
Results from the WOW.Com Content Network
Data reduction is the transformation of numerical or alphabetical digital information derived empirically or experimentally into a corrected, ordered, and simplified form. . The purpose of data reduction can be two-fold: reduce the number of data records by eliminating invalid data or produce summary data and statistics at different aggregation levels for various applications
Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...
Machine learning and data mining often employ the same methods and overlap significantly, but while machine learning focuses on prediction, based on known properties learned from the training data, data mining focuses on the discovery of (previously) unknown properties in the data (this is the analysis step of knowledge discovery in databases).
In machine learning and pattern recognition, a feature is an individual measurable property or characteristic of a data set. [1] Choosing informative, discriminating, and independent features is crucial to produce effective algorithms for pattern recognition, classification, and regression tasks.
Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...
The data transformation may be linear, as in principal component analysis (PCA), but many nonlinear dimensionality reduction techniques also exist. [4] [5] For multidimensional data, tensor representation can be used in dimensionality reduction through multilinear subspace learning. [6]
In machine learning, feature selection is the process of selecting a subset of relevant features (variables, predictors) for use in model construction. Feature selection techniques are used for several reasons: simplification of models to make them easier to interpret, [1] shorter training times, [2] to avoid the curse of dimensionality, [3]
Consider the following simple example using the exclusive OR (XOR) function. XOR is a logical operator that is commonly used in data mining and machine learning as an example of a function that is not linearly separable. The table below represents a simple dataset where the relationship between the attributes (X1 and X2) and the class variable ...