Search results
Results from the WOW.Com Content Network
The virial expansion is a model of thermodynamic equations of state.It expresses the pressure P of a gas in local equilibrium as a power series of the density.This equation may be represented in terms of the compressibility factor, Z, as = + + + This equation was first proposed by Kamerlingh Onnes. [1]
In these equations, the subscript A is for analyte (the solution) and T is for the toluene with the Rayleigh ratio of toluene, R T being 1.35×10 −5 cm −1 for a HeNe laser. As described above, the radius of gyration, R g, and the second virial coefficient, A 2, are also calculated from this equation.
The virial pressure can be derived, using the virial theorem and splitting forces between particles and the container [4] or, alternatively, via direct application of the defining equation = (,,) and using scaled coordinates in the calculation.
This equation may have up to three roots. The maximal root of the cubic equation generally corresponds to a vapor state, while the minimal root is for a liquid state. This should be kept in mind when using cubic equations in calculations, e.g., of vapor-liquid equilibrium.
The virial theorem, and related concepts, provide an often convenient means by which to quantify these properties. In galaxy dynamics, the mass of a galaxy is often inferred by measuring the rotation velocity of its gas and stars, assuming circular Keplerian orbits. Using the virial theorem, the velocity dispersion σ can be
Besides the well-known Pitzer-like equations, there is a simple and easy-to-use semi-empirical model, which is called the three-characteristic-parameter correlation (TCPC) model. It was first proposed by Lin et al. [ 22 ] It is a combination of the Pitzer long-range interaction and short-range solvation effect:
This is the virial equation of state and describes a real gas. Since higher order virial coefficients are generally much smaller than the second coefficient, the gas tends to behave as an ideal gas over a wider range of pressures when the temperature reaches the Boyle temperature (or when c = 1 V m {\textstyle c={\frac {1}{V_{m}}}} or P ...
Octave (aka GNU Octave) is an alternative to MATLAB. Originally conceived in 1988 by John W. Eaton as a companion software for an undergraduate textbook, Eaton later opted to modify it into a more flexible tool. Development began in 1992 and the alpha version was released in 1993. Subsequently, version 1.0 was released a year after that in 1994.