enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degree of a polynomial - Wikipedia

    en.wikipedia.org/wiki/Degree_of_a_polynomial

    The propositions for the degree of sums and products of polynomials in the above section do not apply, if any of the polynomials involved is the zero polynomial. [8] It is convenient, however, to define the degree of the zero polynomial to be negative infinity, , and to introduce the arithmetic rules [9]

  3. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Unlike other constant polynomials, its degree is not zero. Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero ...

  4. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The largest zero of this polynomial which corresponds to the second largest zero of the original polynomial is found at 3 and is circled in red. The degree 5 polynomial is now divided by () to obtain = + + which is shown in yellow. The zero for this polynomial is found at 2 again using Newton's method and is circled in yellow.

  5. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    This can be proved as follows. First, if r is a root of a polynomial with real coefficients, then its complex conjugate is also a root. So the non-real roots, if any, occur as pairs of complex conjugate roots. As a cubic polynomial has three roots (not necessarily distinct) by the fundamental theorem of algebra, at least one root must be real.

  6. Descartes' rule of signs - Wikipedia

    en.wikipedia.org/wiki/Descartes'_rule_of_signs

    Any nth degree polynomial has exactly n roots in the complex plane, if counted according to multiplicity. So if f(x) is a polynomial with real coefficients which does not have a root at 0 (that is a polynomial with a nonzero constant term) then the minimum number of nonreal roots is equal to (+),

  7. Polynomial long division - Wikipedia

    en.wikipedia.org/wiki/Polynomial_long_division

    Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.

  8. Polynomial greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Polynomial_greatest_common...

    Its existence is based on the following theorem: Given two univariate polynomials a and b ≠ 0 defined over a field, there exist two polynomials q (the quotient) and r (the remainder) which satisfy = + and ⁡ < ⁡ (), where "deg(...)" denotes the degree and the degree of the zero polynomial is defined as being negative.

  9. Hilbert's seventeenth problem - Wikipedia

    en.wikipedia.org/wiki/Hilbert's_seventeenth_problem

    Furthermore, if the polynomial has a degree 2d greater than two, there are significantly many more non-negative polynomials that cannot be expressed as sums of squares. [4] The following table summarizes in which cases every non-negative homogeneous polynomial (or a polynomial of even degree) can be represented as a sum of squares: