Search results
Results from the WOW.Com Content Network
Storing the paths through the tree in a skew binary random access list allows the tree to still be extended downward one O(1) step at a time, but now allows the search to proceed in O(log(p)), where "p" is the distance from v to the requested depth. This approach is feasible when the tree is particularly wide or will be extended online and so ...
It asks not only about a shortest path but also about next k−1 shortest paths (which may be longer than the shortest path). A variation of the problem is the loopless k shortest paths. Finding k shortest paths is possible by extending Dijkstra's algorithm or the Bellman-Ford algorithm .
Two primary problems of pathfinding are (1) to find a path between two nodes in a graph; and (2) the shortest path problem—to find the optimal shortest path. Basic algorithms such as breadth-first and depth-first search address the first problem by exhausting all possibilities; starting from the given node, they iterate over all potential ...
Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later. [4] [5] [6]
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The binary Golay code, G 23 is a perfect code. That is, the spheres of radius three around code words form a partition of the vector space. G 23 is a 12-dimensional subspace of the space F 23 2. The automorphism group of the perfect binary Golay code G 23 (meaning the subgroup of the group S 23 of permutations of the coordinates of F 23
Over the years, various improved solutions to the maximum flow problem were discovered, notably the shortest augmenting path algorithm of Edmonds and Karp and independently Dinitz; the blocking flow algorithm of Dinitz; the push-relabel algorithm of Goldberg and Tarjan; and the binary blocking flow algorithm of Goldberg and Rao.
A path in the maximum spanning tree is the widest path in the graph between its two endpoints: among all possible paths, it maximizes the weight of the minimum-weight edge. [21] Maximum spanning trees find applications in parsing algorithms for natural languages [22] and in training algorithms for conditional random fields.