Search results
Results from the WOW.Com Content Network
Evaporation is a type of vaporization that occurs on the surface of a liquid as it changes into the gas phase. [1] A high concentration of the evaporating substance in the surrounding gas significantly slows down evaporation, such as when humidity affects rate of evaporation of water. [ 2 ]
Water vapor can also be indirect evidence supporting the presence of extraterrestrial liquid water in the case of some planetary mass objects. Water vapor, which reacts to temperature changes, is referred to as a 'feedback', because it amplifies the effect of forces that initially cause the warming. Therefore, it is a greenhouse gas. [2]
The vapor-compression evaporation process replaced the once-through steam generators (OTSG) traditionally used for steam production. OTSG generally ran on natural gas which in 2008 had become increasingly valuable. The water quality of evaporators is four times better which is needed for the drum boilers.
Evaporation is a phase transition from the liquid phase to vapor (a state of substance below critical temperature) that occurs at temperatures below the boiling temperature at a given pressure. Evaporation occurs on the surface. Evaporation only occurs when the partial pressure of vapor of a substance is less than the equilibrium vapor pressure ...
This gradient causes Fickian diffusion that transports the vapor away from the droplet and the air towards it, with respect to the mean flow. Thus, in the frame of the droplet, the flow of vapor away from the droplet is faster than for the pure Stefan flow, since diffusion is working in the same direction as the mean flow. However, the flow of ...
Examples are gas-oil-water flows in oil recovery systems and immiscible condensate-vapor flows in steam/hydrocarbon condensing systems. [20] Further examples lie in the flow of oil, water and natural gas. These flow can occur in condensation or evaporation of liquid mixtures (e.g. the condensation or evaporation of steam or hydrocarbons) [9]
The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.
The water is heated and then routed into a reduced-pressure flash evaporation "stage" where some of the water flashes into steam. This steam is subsequently condensed into salt-free water. The residual salty liquid from that first stage is introduced into a second flash evaporation stage at a pressure lower than the first stage pressure.