Search results
Results from the WOW.Com Content Network
The resultant sign from multiplication when both are positive or one is positive and the other is negative can be illustrated so long as one uses the positive factor to give the cardinal value to the implied repeated addition or subtraction operation, or in other words, -5 x 2 = -5 + -5 = -10, or 10 ÷ -2 = 10 - 2 - 2 - 2 - 2 - 2 = 0 (the ...
In other words, x + (−1) ⋅ x = 0, so (−1) ⋅ x is the additive inverse of x, i.e. (−1) ⋅ x = −x, as was to be shown. The square of −1 (that is −1 multiplied by −1) equals 1. As a consequence, a product of two negative numbers is positive. For an algebraic proof of this result, start with the equation
the product of a negative number—al-nāqiṣ (loss)—by a positive number—al-zāʾid (gain)—is negative, and by a negative number is positive. If we subtract a negative number from a higher negative number, the remainder is their negative difference. The difference remains positive if we subtract a negative number from a lower negative ...
When placed after special sets of numbers, plus and minus signs are used to indicate that only positive numbers and negative numbers are included, respectively. For example, + is the set of all positive integers and is the set of all negative integers. In these cases, a subscript 0 may also be added to clarify that 0 is included.
In elementary mathematics, the additive inverse is often referred to as the opposite number, [3] [4] or its negative. [5] The unary operation of arithmetic negation [6] is closely related to subtraction [7] and is important in solving algebraic equations. [8] Not all sets where addition is defined have an additive inverse, such as the natural ...
In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
In particular, multiplying or adding two integers may result in a value that is unexpectedly small, and subtracting from a small integer may cause a wrap to a large positive value (for example, 8-bit integer addition 255 + 2 results in 1, which is 257 mod 2 8, and similarly subtraction 0 − 1 results in 255, a two's complement representation ...