Search results
Results from the WOW.Com Content Network
In case of air, using the perfect gas law and the standard sea-level conditions (SSL) (air density ρ 0 = 1.225 kg/m 3, temperature T 0 = 288.15 K and pressure p 0 = 101 325 Pa), we have that R air = P 0 /(ρ 0 T 0) = 287.052 874 247 J·kg −1 ·K −1.
For example, check the universal gas law equation of PV = nRT, when: the pressure P is in pascals (Pa) the volume V is in cubic metres (m 3) the amount of substance n is in moles (mol) the universal gas constant R is 8.3145 Pa⋅m 3 /(mol⋅K) the temperature T is in kelvins (K)
To calculate the density of air as a function of altitude, one requires additional parameters. For the troposphere, the lowest part (~10 km) of the atmosphere, they are listed below, along with their values according to the International Standard Atmosphere, using for calculation the universal gas constant instead of the air specific constant:
For example, terrestrial air is primarily made up of diatomic gases (around 78% nitrogen, N 2, and 21% oxygen, O 2), and at standard conditions it can be considered to be an ideal gas. The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of ...
The constant = / , and has dimension of molar volume, [v]. The constant expresses the strength of the hypothesized interparticle attraction. Van der Waals only had as a model Newton's law of gravitation, in which two particles are attracted in proportion to the product of their masses.
The atmospheric pressure is roughly equal to the sum of partial pressures of constituent gases – oxygen, nitrogen, argon, water vapor, carbon dioxide, etc.. In a mixture of gases, each constituent gas has a partial pressure which is the notional pressure of that constituent gas as if it alone occupied the entire volume of the original mixture at the same temperature. [1]
As there are many units of mass and volume covering many different magnitudes there are a large number of units for mass density in use. The SI unit of kilogram per cubic metre (kg/m 3) and the cgs unit of gram per cubic centimetre (g/cm 3) are probably the most commonly used units for density. One g/cm 3 is equal to 1000 kg/m 3. One cubic ...
Ch.3 [2]: 156–164, § 3.5 The principle is named after the Swiss mathematician and physicist Daniel Bernoulli, who published it in his book Hydrodynamica in 1738. [3] Although Bernoulli deduced that pressure decreases when the flow speed increases, it was Leonhard Euler in 1752 who derived Bernoulli's equation in its usual form. [4] [5]