enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...

  3. Logarithmic derivative - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_derivative

    The formula as given can be applied more widely; for example if f(z) is a meromorphic function, it makes sense at all complex values of z at which f has neither a zero nor a pole. Further, at a zero or a pole the logarithmic derivative behaves in a way that is easily analysed in terms of the particular case

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    A formula for computing the trigonometric identities for the one-third angle exists, but it requires finding the zeroes of the cubic equation 4x 3 − 3x + d = 0, where is the value of the cosine function at the one-third angle and d is the known value of the cosine function at the full angle.

  5. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    If units of degrees are intended, the degree sign must be explicitly shown (sin x°, cos x°, etc.). Using this standard notation, the argument x for the trigonometric functions satisfies the relationship x = (180 x / π )°, so that, for example, sin π = sin 180° when we take x = π .

  6. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  7. Digamma function - Wikipedia

    en.wikipedia.org/wiki/Digamma_function

    The roots of the digamma function are the saddle points of the complex-valued gamma function. Thus they lie all on the real axis. The only one on the positive real axis is the unique minimum of the real-valued gamma function on R + at x 0 = 1.461 632 144 968 362 341 26.... All others occur single between the poles on the negative axis:

  8. Logarithmic differentiation - Wikipedia

    en.wikipedia.org/wiki/Logarithmic_differentiation

    In calculus, logarithmic differentiation or differentiation by taking logarithms is a method used to differentiate functions by employing the logarithmic derivative of a function f, [1] (⁡) ′ = ′ ′ = (⁡) ′.

  9. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    Generally, if the function ⁡ is any trigonometric function, and ⁡ is its derivative, ∫ a cos ⁡ n x d x = a n sin ⁡ n x + C {\displaystyle \int a\cos nx\,dx={\frac {a}{n}}\sin nx+C} In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration .