enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Trajectory of a particle with initial position vector r 0 and velocity v 0, subject to constant acceleration a, all three quantities in any direction, and the position r(t) and velocity v(t) after time t. The initial position, initial velocity, and acceleration vectors need not be collinear, and the equations of motion take an almost identical ...

  3. Projectile motion - Wikipedia

    en.wikipedia.org/wiki/Projectile_motion

    This is the equation of a parabola, so the path is parabolic. The axis of the parabola is vertical. If the projectile's position (x,y) and launch angle (θ or α) are known, the initial velocity can be found solving for v 0 in the afore-mentioned parabolic equation:

  4. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    Relative velocity is fundamental in both classical and modern physics, since many systems in physics deal with the relative motion of two or more particles. Consider an object A moving with velocity vector v and an object B with velocity vector w ; these absolute velocities are typically expressed in the same inertial reference frame .

  5. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    The initial velocity, v i, is the speed at which said object is launched from the point of origin. The initial angle , θ i , is the angle at which said object is released. The g is the respective gravitational pull on the object within a null-medium.

  6. Range of a projectile - Wikipedia

    en.wikipedia.org/wiki/Range_of_a_projectile

    v is the velocity at which the projectile is launched; g is the gravitational acceleration—usually taken to be 9.81 m/s 2 (32 f/s 2) near the Earth's surface; θ is the angle at which the projectile is launched; y 0 is the initial height of the projectile

  7. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Multiplying by the operator [S], the formula for the velocity v P takes the form: = [] + ˙ = / +, where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector / =, is the position of P relative to the origin O of the moving frame M; and = ˙, is the velocity of the origin O.

  8. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    v 2 is the final velocity of the object at the end of the time interval, and; v 1 is the initial velocity of the object when the time interval begins. Impulse has the same units and dimensions (MLT −1) as momentum. In the International System of Units, these are kg⋅m/s = N⋅s. In English engineering units, they are slug⋅ft/s = lbf⋅s.

  9. Elastic collision - Wikipedia

    en.wikipedia.org/wiki/Elastic_collision

    In physics, an elastic collision ... is the initial velocity of the ... which is like using a frame of reference with constant translational velocity. Indeed, to ...