Search results
Results from the WOW.Com Content Network
Stream processing is especially suitable for applications that exhibit three application characteristics: [citation needed] Compute intensity, the number of arithmetic operations per I/O or global memory reference. In many signal processing applications today it is well over 50:1 and increasing with algorithmic complexity.
Distributed data processing. Distributed data processing [1] (DDP) [2] was the term that IBM used for the IBM 3790 (1975) and its successor, the IBM 8100 (1979). Datamation described the 3790 in March 1979 as "less than successful." [3] [4] Distributed data processing was used by IBM to refer to two environments: IMS DB/DC; CICS/DL/I [5] [6]
Distributed Data Management Architecture (DDM) is IBM's open, published software architecture for creating, managing and accessing data on a remote computer. DDM was initially designed to support record-oriented files; it was extended to support hierarchical directories, stream-oriented files, queues, and system command processing; it was further extended to be the base of IBM's Distributed ...
The primary advantage of this distributed processing pattern is the lack of a central authority, which would constitute a single point of failure. When a ledger update transaction is broadcast to the P2P network, each distributed node processes a new update transaction independently, and then collectively all working nodes use a consensus ...
A distributed algorithm is an algorithm designed to run on computer hardware constructed from interconnected processors. Distributed algorithms are used in different application areas of distributed computing , such as telecommunications , scientific computing , distributed information processing , and real-time process control .
The RM-ODP view model, which provides five generic and complementary viewpoints on the system and its environment.. Reference Model of Open Distributed Processing (RM-ODP) is a reference model in computer science, which provides a co-ordinating framework for the standardization of open distributed processing (ODP).
Modern data centers must support large, heterogenous environments, consisting of large numbers of computers of varying capacities. Cloud computing coordinates the operation of all such systems, with techniques such as data center networking (DCN), the MapReduce framework, which supports data-intensive computing applications in parallel and distributed systems, and virtualization techniques ...
BCG (Binary Coded Graphs) is both a file format for storing very large graphs on disk (using efficient compression techniques) and a software environment for handling this format, including partitioning graphs for distributed processing. BCG also plays a key role in CADP as many tools rely on this format for their inputs/outputs.