enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Drift velocity - Wikipedia

    en.wikipedia.org/wiki/Drift_velocity

    The formula for evaluating the drift velocity of charge carriers in a material of constant cross-sectional area is given by: [1] =, where u is the drift velocity of electrons, j is the current density flowing through the material, n is the charge-carrier number density, and q is the charge on the charge-carrier.

  3. Electron mobility - Wikipedia

    en.wikipedia.org/wiki/Electron_mobility

    The electron mobility is defined by the equation: =. where: E is the magnitude of the electric field applied to a material,; v d is the magnitude of the electron drift velocity (in other words, the electron drift speed) caused by the electric field, and

  4. Drift current - Wikipedia

    en.wikipedia.org/wiki/Drift_current

    The drift velocity is the average velocity of the charge carriers in the drift current. The drift velocity, and resulting current, is characterized by the mobility; for details, see electron mobility (for solids) or electrical mobility (for a more general discussion). See drift–diffusion equation for the way that the drift current, diffusion ...

  5. Speed of electricity - Wikipedia

    en.wikipedia.org/wiki/Speed_of_electricity

    The drift velocity deals with the average velocity of a particle, such as an electron, due to an electric field. In general, an electron will propagate randomly in a conductor at the Fermi velocity. [5] Free electrons in a conductor follow a random path. Without the presence of an electric field, the electrons have no net velocity.

  6. Guiding center - Wikipedia

    en.wikipedia.org/wiki/Guiding_center

    The drift velocity is = Because of the mass dependence, the gravitational drift for the electrons can normally be ignored. The dependence on the charge of the particle implies that the drift direction is opposite for ions as for electrons, resulting in a current.

  7. Electrical mobility - Wikipedia

    en.wikipedia.org/wiki/Electrical_mobility

    In other words, the electrical mobility of the particle is defined as the ratio of the drift velocity to the magnitude of the electric field: =. For example, the mobility of the sodium ion (Na +) in water at 25 °C is 5.19 × 10 −8 m 2 /(V·s). [1]

  8. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    Drude applied the kinetic theory of a dilute gas, despite the high densities, therefore ignoring electronelectron and electron–ion interactions aside from collisions. [ Ashcroft & Mermin 13 ] The Drude model considers the metal to be formed of a collection of positively charged ions from which a number of "free electrons" were detached.

  9. Saturation velocity - Wikipedia

    en.wikipedia.org/wiki/Saturation_velocity

    Diagram showing Drift Velocity. Saturation velocity is the maximum velocity a charge carrier in a semiconductor, generally an electron, attains in the presence of very high electric fields. [1] When this happens, the semiconductor is said to be in a state of velocity saturation.