Search results
Results from the WOW.Com Content Network
The most commonly used is the center-fed half-wave dipole which is just under a half-wavelength long. The radiation pattern of the half-wave dipole is maximum perpendicular to the conductor, falling to zero in the axial direction, thus implementing an omnidirectional antenna if installed vertically, or (more commonly) a weakly directional ...
A full-wave loop antenna is slightly more than two half-wavelengths in circumference, which is a bit more than double the size of a halo antenna designed to operate on the same frequency. In contrast, the two semi-circles of a resonant loop, each is a half wavelength long. There is no gap, and each semicircle ends at the semi-circles ...
The driven element of the antenna is usually a half-wave dipole, its length half a wavelength of the radio waves used. The parasitic elements are of two types. A "reflector" is slightly longer (around 5%) than a half-wavelength. It serves to reflect the radio waves in the opposite direction.
Folded dipole A typical folded dipole is two half-wave dipoles mounted parallel to each other, a few inches apart, with the far ends connected. Only one of the dipoles is fed, and the second dipole connects straight through the center where the first has the usual feedpoint.
Animated diagram of a half-wave dipole antenna receiving a radio wave. The antenna consists of two metal rods connected to a receiver R. The electric field (E, green arrows) of the incoming wave results in oscillation of the electrons in the rods, charging the ends alternately positive (+) and negative (−).
Two element dipole array in front of a one wavelength square reflector used as gain standard. The gain of practical array antennas is limited to about 25–30 dB. Two half wave elements spaced a half wave apart and a quarter wave from a reflecting screen have been used as a standard gain antenna with about 9.8 dBi at its design frequency. [4]
Antenna measurement techniques refers to the testing of antennas in order to ensure that the antenna meets specifications or simply to characterize it. Typical antenna parameters are gain, bandwidth, radiation pattern, beamwidth, polarization, impedance; These are imperative communicative means.
Dipole field strength in free space, in telecommunications, is the electric field strength caused by a half wave dipole under ideal conditions. The actual field strength in terrestrial environments is calculated by empirical formulas based on this field strength.