enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stokesian dynamics - Wikipedia

    en.wikipedia.org/wiki/Stokesian_dynamics

    Stokesian dynamics [1] is a solution technique for the Langevin equation, which is the relevant form of Newton's 2nd law for a Brownian particle.The method treats the suspended particles in a discrete sense while the continuum approximation remains valid for the surrounding fluid, i.e., the suspended particles are generally assumed to be significantly larger than the molecules of the solvent.

  3. Free particle - Wikipedia

    en.wikipedia.org/wiki/Free_particle

    A free particle with mass in non-relativistic quantum mechanics is described by the free Schrödinger equation: (,) = (,) where ψ is the wavefunction of the particle at position r and time t . The solution for a particle with momentum p or wave vector k , at angular frequency ω or energy E , is given by a complex plane wave :

  4. Moving particle semi-implicit method - Wikipedia

    en.wikipedia.org/wiki/Moving_particle_semi...

    The moving particle semi-implicit (MPS) method is a computational method for the simulation of incompressible free surface flows. It is a macroscopic, deterministic particle method (Lagrangian mesh-free method ) developed by Koshizuka and Oka (1996) .

  5. Gibbs–Thomson equation - Wikipedia

    en.wikipedia.org/wiki/Gibbs–Thomson_equation

    The technique is closely related to using gas adsorption to measure pore sizes, but uses the Gibbs–Thomson equation rather than the Kelvin equation.They are both particular cases of the Gibbs Equations of Josiah Willard Gibbs: the Kelvin equation is the constant temperature case, and the Gibbs–Thomson equation is the constant pressure case. [1]

  6. Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Brownian_motion

    Brownian motion is the random motion of particles suspended in a medium (a liquid or a gas). [2] This motion pattern typically consists of random fluctuations in a particle's position inside a fluid sub-domain, followed by a relocation to another sub-domain. Each relocation is followed by more fluctuations within the new closed volume.

  7. Effective mass (solid-state physics) - Wikipedia

    en.wikipedia.org/wiki/Effective_mass_(solid...

    One of the results from the band theory of solids is that the movement of particles in a periodic potential, over long distances larger than the lattice spacing, can be very different from their motion in a vacuum. The effective mass is a quantity that is used to simplify band structures by modeling the behavior of a free particle with that mass.

  8. Crystal momentum - Wikipedia

    en.wikipedia.org/wiki/Crystal_momentum

    The phase modulation of the Bloch state = is the same as that of a free particle with momentum , i.e. gives the state's periodicity, which is not the same as that of the lattice. This modulation contributes to the kinetic energy of the particle (whereas the modulation is entirely responsible for the kinetic energy of a free particle).

  9. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.