Search results
Results from the WOW.Com Content Network
A Boolean function can be represented as a rooted, directed, acyclic graph, which consists of several (decision) nodes and two terminal nodes.The two terminal nodes are labeled 0 (FALSE) and 1 (TRUE).
In mathematics, a Boolean function is a function whose arguments and result assume values from a two-element set (usually {true, false}, {0,1} or {-1,1}). [1] [2] Alternative names are switching function, used especially in older computer science literature, [3] [4] and truth function (or logical function), used in logic.
The functions studied are often, but not always, Boolean-valued, making them Boolean functions. The area has found many applications in combinatorics , social choice theory , random graphs , and theoretical computer science, especially in hardness of approximation , property testing , and PAC learning .
A propositional directed acyclic graph (PDAG) is a data structure that is used to represent a Boolean function. A Boolean function can be represented as a rooted, directed acyclic graph of the following form: Leaves are labeled with (true), (false), or a Boolean variable.
An ADD represents a Boolean function from {,} to a finite set of constants S, or carrier of the algebraic structure. An ADD is a rooted, directed, acyclic graph, which has several nodes, like a BDD. However, an ADD can have more than two terminal nodes which are elements of the set S, unlike a BDD.
Boolean function; Boolean-valued function; Boolean-valued model; Boolean satisfiability problem; Boolean differential calculus; Indicator function (also called the characteristic function, but that term is used in probability theory for a different concept) Espresso heuristic logic minimizer; Logical matrix; Logical value; Stone duality; Stone ...
Example Boolean circuit. The nodes are AND gates, the nodes are OR gates, and the nodes are NOT gates. In theoretical computer science, circuit complexity is a branch of computational complexity theory in which Boolean functions are classified according to the size or depth of the Boolean circuits that compute them.
The concept of an evasive function was introduced in connection with the study of graph algorithms for graphs defined in an implicit graph model, where an algorithm has access to the graph only through a subroutine for testing the adjacency of vertices. In this application, a graph property can be described as a Boolean function whose input ...