enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Template:Binary - Wikipedia

    en.wikipedia.org/wiki/Template:Binary

    This template is for quickly converting a decimal number to binary. Usage Use {{Binary|x|y}} where x is the decimal number and y is the decimal precision (positive numbers, defaults displays up to 10 digits following the binary point).

  3. Binary number - Wikipedia

    en.wikipedia.org/wiki/Binary_number

    The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate power of two in the decimal base. For example:

  4. Binary-coded decimal - Wikipedia

    en.wikipedia.org/wiki/Binary-coded_decimal

    If errors in representation and computation are more important than the speed of conversion to and from display, a scaled binary representation may be used, which stores a decimal number as a binary-encoded integer and a binary-encoded signed decimal exponent. For example, 0.2 can be represented as 2 × 10 −1.

  5. Single-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Single-precision_floating...

    In particular, the examples are simple particular cases (simple values exactly representable in binary, without an exponent part). This section is also probably off-topic: this is not an article about conversion, and conversion from decimal using decimal arithmetic (as opposed to conversion from a character string) is uncommon.

  6. Double dabble - Wikipedia

    en.wikipedia.org/wiki/Double_dabble

    In computer science, the double dabble algorithm is used to convert binary numbers into binary-coded decimal (BCD) notation. [ 1 ] [ 2 ] It is also known as the shift-and-add -3 algorithm , and can be implemented using a small number of gates in computer hardware, but at the expense of high latency .

  7. Q (number format) - Wikipedia

    en.wikipedia.org/wiki/Q_(number_format)

    The Q notation is a way to specify the parameters of a binary fixed point number format. For example, in Q notation, the number format denoted by Q8.8 means that the fixed point numbers in this format have 8 bits for the integer part and 8 bits for the fraction part. A number of other notations have been used for the same purpose.

  8. Computer number format - Wikipedia

    en.wikipedia.org/wiki/Computer_number_format

    In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32". An example and comparison of numbers in different bases is described in the chart below.

  9. Double-precision floating-point format - Wikipedia

    en.wikipedia.org/wiki/Double-precision_floating...

    However, on modern standard computers (i.e., implementing IEEE 754), one may safely assume that the endianness is the same for floating-point numbers as for integers, making the conversion straightforward regardless of data type. Small embedded systems using special floating-point formats may be another matter, however.