Search results
Results from the WOW.Com Content Network
DNA is a long polymer made from repeating units called nucleotides. [6] [7] The structure of DNA is dynamic along its length, being capable of coiling into tight loops and other shapes. [8] In all species it is composed of two helical chains, bound to each other by hydrogen bonds.
DNA structure and bases A-B-Z-DNA Side View. Tertiary structure refers to the locations of the atoms in three-dimensional space, taking into consideration geometrical and steric constraints. It is a higher order than the secondary structure, in which large-scale folding in a linear polymer occurs and the entire chain is folded into a specific 3 ...
The DNA model shown (far right) is a space-filling, or CPK, model of the DNA double helix. Animated molecular models, such as the wire, or skeletal, type shown at the top of this article, allow one to visually explore the three-dimensional (3D) structure of DNA. Another type of DNA model is the space-filling, or CPK, model.
Nucleic acid types differ in the structure of the sugar in their nucleotides–DNA contains 2'-deoxyribose while RNA contains ribose (where the only difference is the presence of a hydroxyl group). Also, the nucleobases found in the two nucleic acid types are different: adenine , cytosine , and guanine are found in both RNA and DNA, while ...
The double-helix model of DNA structure was first published in the journal Nature by James Watson and Francis Crick in 1953, [6] (X,Y,Z coordinates in 1954 [7]) based on the work of Rosalind Franklin and her student Raymond Gosling, who took the crucial X-ray diffraction image of DNA labeled as "Photo 51", [8] [9] and Maurice Wilkins, Alexander Stokes, and Herbert Wilson, [10] and base-pairing ...
The Path to The Double Helix: Discovery of DNA. MacMillan. ISBN 978-0-486-68117-7. (with foreword by Francis Crick; revised in 1994, with a 9-page postscript.) Watson, James D. (1980). The Double Helix: A Personal Account of the Discovery of the Structure of DNA. Atheneum. ISBN 978-0-689-70602-8. (first published in 1968) Wilkins, Maurice (2003).
Most methods for nucleic acid secondary structure prediction rely on a nearest neighbor thermodynamic model. [12] [13] A common method to determine the most probable structures given a sequence of nucleotides makes use of a dynamic programming algorithm that seeks to find structures with low free energy. [14]
Nuclear DNA is a nucleic acid, a polymeric biomolecule or biopolymer, found in the nucleus of eukaryotic cells.Its structure is a double helix, with two strands wound around each other, a structure first described by Francis Crick and James D. Watson (1953) using data collected by Rosalind Franklin.