enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Internet checksum - Wikipedia

    en.wikipedia.org/wiki/Internet_checksum

    The Internet checksum, [1] [2] also called the IPv4 header checksum is a checksum used in version 4 of the Internet Protocol (IPv4) to detect corruption in the header of IPv4 packets. It is carried in the IPv4 packet header , and represents the 16-bit result of the summation of the header words.

  3. List of hash functions - Wikipedia

    en.wikipedia.org/wiki/List_of_hash_functions

    SYSV checksum (Unix) 16 bits sum with circular rotation sum8 8 bits sum Internet Checksum: 16 bits sum (ones' complement) sum24 24 bits sum sum32 32 bits sum fletcher-4: 4 bits sum fletcher-8: 8 bits sum fletcher-16: 16 bits sum fletcher-32: 32 bits sum Adler-32: 32 bits sum xor8: 8 bits sum Luhn algorithm: 1 decimal digit sum Verhoeff ...

  4. Fletcher's checksum - Wikipedia

    en.wikipedia.org/wiki/Fletcher's_checksum

    In this respect, the Fletcher checksum is not different from other checksum and CRC algorithms and needs no special explanation. An ordering problem that is easy to envision occurs when the data word is transferred byte-by-byte between a big-endian system and a little-endian system and the Fletcher-32 checksum is computed.

  5. Checksum - Wikipedia

    en.wikipedia.org/wiki/Checksum

    The checksum algorithms most used in practice, such as Fletcher's checksum, Adler-32, and cyclic redundancy checks (CRCs), address these weaknesses by considering not only the value of each word but also its position in the sequence. This feature generally increases the cost of computing the checksum.

  6. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    A checksum of a message is a modular arithmetic sum of message code words of a fixed word length (e.g., byte values). The sum may be negated by means of a ones'-complement operation prior to transmission to detect unintentional all-zero messages. Checksum schemes include parity bits, check digits, and longitudinal redundancy checks.

  7. BLAKE (hash function) - Wikipedia

    en.wikipedia.org/wiki/BLAKE_(hash_function)

    BLAKE3 is a single algorithm with many desirable features (parallelism, XOF, KDF, PRF and MAC), in contrast to BLAKE and BLAKE2, which are algorithm families with multiple variants. BLAKE3 has a binary tree structure, so it supports a practically unlimited degree of parallelism (both SIMD and multithreading) given long enough input.

  8. Cyclic redundancy check - Wikipedia

    en.wikipedia.org/wiki/Cyclic_redundancy_check

    The table below lists only the polynomials of the various algorithms in use. Variations of a particular protocol can impose pre-inversion, post-inversion and reversed bit ordering as described above. For example, the CRC32 used in Gzip and Bzip2 use the same polynomial, but Gzip employs reversed bit ordering, while Bzip2 does not. [14]

  9. Fowler–Noll–Vo hash function - Wikipedia

    en.wikipedia.org/wiki/Fowler–Noll–Vo_hash...

    The FNV-1 hash algorithm is as follows: [9] [10] algorithm fnv-1 is hash := FNV_offset_basis for each byte_of_data to be hashed do hash := hash × FNV_prime hash := hash XOR byte_of_data return hash. In the above pseudocode, all variables are unsigned integers. All variables, except for byte_of_data, have the same number of bits as the FNV hash.