Search results
Results from the WOW.Com Content Network
Simple functions are sufficiently "nice" that using them makes mathematical reasoning, theory, and proof easier. For example, simple functions attain only a finite number of values. Some authors also require simple functions to be measurable; as used in practice, they invariably are. A basic example of a simple function is the floor function ...
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
A parametric equation is an equation in which the solutions for the variables are expressed as functions of some other variables, called parameters appearing in the equations; A functional equation is an equation in which the unknowns are functions rather than simple quantities; Equations involving derivatives, integrals and finite differences:
In mathematical logic, a literal is an atomic formula (also known as an atom or prime formula) or its negation. [1] [2] The definition mostly appears in proof theory (of classical logic), e.g. in conjunctive normal form and the method of resolution. Literals can be divided into two types: [2] A positive literal is just an atom (e.g., ).
In the context of functions, the term variable refers commonly to the arguments of the functions. This is typically the case in sentences like "function of a real variable", "x is the variable of the function f : x ↦ f(x)", "f is a function of the variable x" (meaning that the argument of the function is referred to by the variable x).
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
A real-valued function of a real variable is a function that takes as input a real number, commonly represented by the variable x, for producing another real number, the value of the function, commonly denoted f(x). For simplicity, in this article a real-valued function of a real variable will be simply called a function. To avoid any ambiguity ...
The symbol that is used for representing the input is the variable of the function (one often says that f is a function of the variable x). function composition Is an operation that takes two functions f and g and produces a function h such that h(x) = g(f(x)). In this operation, the function g is applied to the result of applying the function ...