Search results
Results from the WOW.Com Content Network
In number theory, a kth root of unity modulo n for positive integers k, n ≥ 2, is a root of unity in the ring of integers modulo n; that is, a solution x to the equation (or congruence) ().
If g is a primitive root modulo p, then g is also a primitive root modulo all powers p k unless g p −1 ≡ 1 (mod p 2); in that case, g + p is. [14] If g is a primitive root modulo p k, then g is also a primitive root modulo all smaller powers of p. If g is a primitive root modulo p k, then either g or g + p k (whichever one is odd) is a ...
In mathematics, a primitive root may mean: Primitive root modulo n in modular arithmetic; Primitive nth root of unity amongst the solutions of z n = 1 in a field; See ...
For n = 1, the cyclotomic polynomial is Φ 1 (x) = x − 1 Therefore, the only primitive first root of unity is 1, which is a non-primitive n th root of unity for every n > 1. As Φ 2 (x) = x + 1, the only primitive second (square) root of unity is −1, which is also a non-primitive n th root of unity for every even n > 2.
The polynomial x 2 + 2x + 2, on the other hand, is primitive. Denote one of its roots by α. Then, because the natural numbers less than and relatively prime to 3 2 − 1 = 8 are 1, 3, 5, and 7, the four primitive roots in GF(3 2) are α, α 3 = 2α + 1, α 5 = 2α, and α 7 = α + 2. The primitive roots α and α 3 are algebraically
In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [ 1 ] In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n .
The search engine that helps you find exactly what you're looking for. Find the most relevant information, video, images, and answers from all across the Web.
Safe primes ending in 7, that is, of the form 10n + 7, are the last terms in such chains when they occur, since 2(10n + 7) + 1 = 20n + 15 is divisible by 5. For a safe prime, every quadratic nonresidue, except -1 (if nonresidue [a]), is a primitive root. It follows that for a safe prime, the least positive primitive root is a prime number. [15]