enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Topological manifold - Wikipedia

    en.wikipedia.org/wiki/Topological_manifold

    It is common to place additional requirements on topological manifolds. In particular, many authors define them to be paracompact [3] or second-countable. [2] In the remainder of this article a manifold will mean a topological manifold. An n-manifold will mean a topological manifold such that every point has a neighborhood homeomorphic to R n.

  3. Boundary (topology) - Wikipedia

    en.wikipedia.org/wiki/Boundary_(topology)

    Conversely, the boundary of a closed disk viewed as a manifold is the bounding circle, as is its topological boundary viewed as a subset of the real plane, while its topological boundary viewed as a subset of itself is empty. In particular, the topological boundary depends on the ambient space, while the boundary of a manifold is invariant.

  4. Atlas (topology) - Wikipedia

    en.wikipedia.org/wiki/Atlas_(topology)

    In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.

  5. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    By definition, all manifolds are topological manifolds, so the phrase "topological manifold" is usually used to emphasize that a manifold lacks additional structure, or that only its topological properties are being considered. Formally, a topological manifold is a topological space locally homeomorphic to a Euclidean space.

  6. Collar neighbourhood - Wikipedia

    en.wikipedia.org/wiki/Collar_neighbourhood

    In topology, a branch of mathematics, a collar neighbourhood of a manifold with boundary is a neighbourhood of its boundary that has the same structure as [,).. Formally if is a differentiable manifold with boundary, is a collar neighbourhood of whenever there is a diffeomorphism: [,) such that for every , (,) =.

  7. Surface (topology) - Wikipedia

    en.wikipedia.org/wiki/Surface_(topology)

    More generally, a (topological) surface with boundary is a Hausdorff topological space in which every point has an open neighbourhood homeomorphic to some open subset of the closure of the upper half-plane H 2 in C. These homeomorphisms are also known as (coordinate) charts. The boundary of the upper half-plane is the x-axis.

  8. Kirby calculus - Wikipedia

    en.wikipedia.org/wiki/Kirby_calculus

    An extended set of diagrams and moves are used for describing 4-manifolds. A framed link in the 3-sphere encodes instructions for attaching 2-handles to the 4-ball. (The 3-dimensional boundary of this manifold is the 3-manifold interpretation of the link diagram mentioned above.) 1-handles are denoted by either

  9. Classification of manifolds - Wikipedia

    en.wikipedia.org/wiki/Classification_of_manifolds

    A topological manifold that is in the image of is said to "admit a differentiable structure", and the fiber over a given topological manifold is "the different differentiable structures on the given topological manifold". Thus given two categories, the two natural questions are: