Search results
Results from the WOW.Com Content Network
[3] [4] [5] Other cancellation examples include the expected symmetric prevalence of right- and left-handed angular momenta of objects ("spin" in the common sense), the observed flatness of the universe, the equal prevalence of positive and negative charges, opposing particle spin in quantum mechanics, as well as the crests and troughs of ...
A Universe from Nothing: Why There Is Something Rather than Nothing is a non-fiction book by the physicist Lawrence M. Krauss, initially published on January 10, 2012, by Free Press. It discusses modern cosmogony and its implications for the debate about the existence of God .
3D visualization of quantum fluctuations of the quantum chromodynamics (QCD) vacuum [1]. In quantum physics, a quantum fluctuation (also known as a vacuum state fluctuation or vacuum fluctuation) is the temporary random change in the amount of energy in a point in space, [2] as prescribed by Werner Heisenberg's uncertainty principle.
The video of an experiment showing vacuum fluctuations (in the red ring) amplified by spontaneous parametric down-conversion.. If the quantum field theory can be accurately described through perturbation theory, then the properties of the vacuum are analogous to the properties of the ground state of a quantum mechanical harmonic oscillator, or more accurately, the ground state of a measurement ...
The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0). The spacetime of ...
The factor of 1 / 2 is present because the zero-point energy of the n th mode is 1 / 2 E n, where E n is the energy increment for the n th mode. (It is the same 1 / 2 as appears in the equation E = 1 / 2 ħω.) Written in this way, this sum is clearly divergent; however, it can be used to create finite expressions.
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
After the development of quantum field theory in the 1940s, the first to address contributions of quantum fluctuations to the cosmological constant was Yakov Zeldovich in the 1960s. [8] [9] In quantum mechanics, the vacuum itself should experience quantum fluctuations. In general relativity, those quantum fluctuations constitute energy that ...