enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bernt Øksendal - Wikipedia

    en.wikipedia.org/wiki/Bernt_Øksendal

    In 1982 he taught a postgraduate course in stochastic calculus at the University of Edinburgh which led to the book Øksendal, Bernt K. (1982). Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin. In 2005, he taught a course in stochastic calculus at the African Institute for Mathematical Sciences in Cape Town.

  3. Itô calculus - Wikipedia

    en.wikipedia.org/wiki/Itô_calculus

    Øksendal, Bernt K. (2003), Stochastic Differential Equations: An Introduction with Applications, Berlin: Springer, ISBN 3-540-04758-1 Protter, Philip E. (2004), Stochastic Integration and Differential Equations (2nd ed.), Springer, ISBN 3-540-00313-4

  4. Malliavin calculus - Wikipedia

    en.wikipedia.org/wiki/Malliavin_calculus

    Malliavin introduced Malliavin calculus to provide a stochastic proof that Hörmander's condition implies the existence of a density for the solution of a stochastic differential equation; Hörmander's original proof was based on the theory of partial differential equations. His calculus enabled Malliavin to prove regularity bounds for the ...

  5. Itô's lemma - Wikipedia

    en.wikipedia.org/wiki/Itô's_lemma

    Stochastic Integral. Proc. Imperial Acad. Tokyo 20, 519–524. This is the paper with the Ito Formula; Online; Kiyosi Itô (1951). On stochastic differential equations. Memoirs, American Mathematical Society 4, 1–51. Online; Bernt Øksendal (2000). Stochastic Differential Equations. An Introduction with Applications, 5th edition, corrected ...

  6. Stochastic differential equation - Wikipedia

    en.wikipedia.org/wiki/Stochastic_differential...

    Stochastic differential equations originated in the theory of Brownian motion, in the work of Albert Einstein and Marian Smoluchowski in 1905, although Louis Bachelier was the first person credited with modeling Brownian motion in 1900, giving a very early example of a stochastic differential equation now known as Bachelier model.

  7. Geometric Brownian motion - Wikipedia

    en.wikipedia.org/wiki/Geometric_Brownian_motion

    A stochastic process S t is said to follow a GBM if it satisfies the following stochastic differential equation (SDE): = + where is a Wiener process or Brownian motion, and ('the percentage drift') and ('the percentage volatility') are constants.

  8. Stochastic calculus - Wikipedia

    en.wikipedia.org/wiki/Stochastic_calculus

    An important application of stochastic calculus is in mathematical finance, in which asset prices are often assumed to follow stochastic differential equations.For example, the Black–Scholes model prices options as if they follow a geometric Brownian motion, illustrating the opportunities and risks from applying stochastic calculus.

  9. Itô diffusion - Wikipedia

    en.wikipedia.org/wiki/Itô_diffusion

    This illustrates one of the connections between stochastic analysis and the study of partial differential equations. Conversely, a given second-order linear partial differential equation of the form Λ f = 0 may be hard to solve directly, but if Λ = A ∗ for some Itô diffusion X , and an invariant measure for X is easy to compute, then that ...