Search results
Results from the WOW.Com Content Network
Hilbert's 1927, Based on an earlier 1925 "foundations" lecture (pp. 367–392), presents his 17 axioms—axioms of implication #1-4, axioms about & and V #5-10, axioms of negation #11-12, his logical ε-axiom #13, axioms of equality #14-15, and axioms of number #16-17—along with the other necessary elements of his Formalist "proof theory"—e ...
Proof theory is a major branch [1] ... However, modified versions of Hilbert's program emerged and research has been carried out on related topics. This has led, in ...
Many current lines of research in mathematical logic, such as proof theory and reverse mathematics, can be viewed as natural continuations of Hilbert's original program. Much of it can be salvaged by changing its goals slightly (Zach 2005), and with the following modifications some of it was successfully completed:
Classical propositional calculus is the standard propositional logic. Its intended semantics is bivalent and its main property is that it is strongly complete, otherwise said that whenever a formula semantically follows from a set of premises, it also follows from that set syntactically.
In mathematics, Hilbert's second problem was posed by David Hilbert in 1900 as one of his 23 problems. It asks for a proof that arithmetic is consistent – free of any internal contradictions. Hilbert stated that the axioms he considered for arithmetic were the ones given in Hilbert (1900), which include a second order completeness axiom.
Hilbert proved the theorem (for the special case of multivariate polynomials over a field) in the course of his proof of finite generation of rings of invariants. [1] The theorem is interpreted in algebraic geometry as follows: every algebraic set is the set of the common zeros of finitely many polynomials.
Although Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea"—in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) was "the object". [31]
Hilbert's axioms, unlike Tarski's axioms, do not constitute a first-order theory because the axioms V.1–2 cannot be expressed in first-order logic. The value of Hilbert's Grundlagen was more methodological than substantive or pedagogical.