enow.com Web Search

  1. Ad

    related to: best practices for big data

Search results

  1. Results from the WOW.Com Content Network
  2. DataOps - Wikipedia

    en.wikipedia.org/wiki/Dataops

    DataOps was first introduced by Lenny Liebmann, Contributing Editor, InformationWeek, in a blog post on the IBM Big Data & Analytics Hub titled "3 reasons why DataOps is essential for big data success" on June 19, 2014. [7] The term DataOps was later popularized by Andy Palmer of Tamr and Steph Locke. [8] [4] DataOps is a moniker for "Data ...

  3. Big data - Wikipedia

    en.wikipedia.org/wiki/Big_data

    Big data "size" is a constantly moving target; as of 2012 ranging from a few dozen terabytes to many zettabytes of data. [26] Big data requires a set of techniques and technologies with new forms of integration to reveal insights from data-sets that are diverse, complex, and of a massive scale. [27]

  4. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    Data science process flowchart from Doing Data Science, by Schutt & O'Neil (2013) Analysis refers to dividing a whole into its separate components for individual examination. [10] Data analysis is a process for obtaining raw data, and subsequently converting it into information useful for decision-making by users. [1]

  5. Data management - Wikipedia

    en.wikipedia.org/wiki/Data_management

    However, data has staged a comeback with the popularisation of the term big data, which refers to the collection and analyses of massive sets of data. While big data is a recent phenomenon, the requirement for data to aid decision-making traces back to the early 1970s with the emergence of decision support systems (DSS).

  6. Data vault modeling - Wikipedia

    en.wikipedia.org/wiki/Data_Vault_Modeling

    Within the methodology, the implementation of best practices is defined. Data Vault 2.0 has a focus on including new components such as big data, NoSQL - and also focuses on the performance of the existing model. The old specification (documented here for the most part) is highly focused on data vault modeling.

  7. Big data ethics - Wikipedia

    en.wikipedia.org/wiki/Big_data_ethics

    In terms of governance, big data ethics is concerned with which types of inferences and predictions should be made using big data technologies such as algorithms. [9] Anticipatory governance is the practice of using predictive analytics to assess possible future behaviors. [10]

  8. Big data maturity model - Wikipedia

    en.wikipedia.org/wiki/Big_Data_Maturity_Model

    The TDWI big data maturity model is a model in the current big data maturity area and therefore consists of a significant body of knowledge. [6] Maturity stages. The different stages of maturity in the TDWI BDMM can be summarized as follows: Stage 1: Nascent. The nascent stage as a pre–big data environment. During this stage:

  9. Data governance - Wikipedia

    en.wikipedia.org/wiki/Data_governance

    Methods to manage these risks vary from industry to industry. Examples of commonly referenced best practices and guidelines include COBIT, ISO/IEC 38500, and others. The proliferation of regulations and standards creates challenges for data governance professionals, particularly when multiple regulations overlap the data being managed.

  1. Ad

    related to: best practices for big data