Search results
Results from the WOW.Com Content Network
A trail is a walk in which all edges are distinct. [2] A path is a trail in which all vertices (and therefore also all edges) are distinct. [2] If w = (e 1, e 2, …, e n − 1) is a finite walk with vertex sequence (v 1, v 2, …, v n) then w is said to be a walk from v 1 to v n. Similarly for a trail or a path.
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once.
A traceable graph is a graph that contains a Hamiltonian path. trail A walk without repeated edges. transitive Having to do with the transitive property. The transitive closure of a given directed graph is a graph on the same vertex set that has an edge from one vertex to another whenever the original graph has a path connecting the same two ...
In graph theory, a cycle in a graph is a non-empty trail in which only the first and last vertices are equal. A directed cycle in a directed graph is a non-empty directed trail in which only the first and last vertices are equal. A graph without cycles is called an acyclic graph. A directed graph without directed cycles is called a directed ...
Euler's argument shows that a necessary condition for the walk of the desired form is that the graph be connected and have exactly zero or two nodes of odd degree. This condition turns out also to be sufficient—a result stated by Euler and later proved by Carl Hierholzer. Such a walk is now called an Eulerian trail or Euler walk in his honor ...
In graph theory, a walk-regular graph is a simple graph where the number of closed walks of any length from a vertex to itself does only depend on but not depend on the choice of vertex. Walk-regular graphs can be thought of as a spectral graph theory analogue of vertex-transitive graphs .
For premium support please call: 800-290-4726 more ways to reach us
A graph that contains a Hamiltonian path is called a traceable graph. A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle , Hamiltonian circuit , vertex tour or graph cycle is a cycle that visits each vertex exactly once.