Search results
Results from the WOW.Com Content Network
A directed path (sometimes called dipath [1]) in a directed graph is a finite or infinite sequence of edges which joins a sequence of distinct vertices, but with the added restriction that the edges be all directed in the same direction. Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory ...
An Eulerian trail, [note 1] or Euler walk, in an undirected graph is a walk that uses each edge exactly once. If such a walk exists, the graph is called traversable or semi-eulerian. [3] An Eulerian cycle, [note 1] also called an Eulerian circuit or Euler tour, in an undirected graph is a cycle that uses each edge exactly once.
Spectral graph theory is the branch of graph theory that uses spectra to analyze graphs. See also spectral expansion. split 1. A split graph is a graph whose vertices can be partitioned into a clique and an independent set. A related class of graphs, the double split graphs, are used in the proof of the strong perfect graph theorem.
A graph that contains a Hamiltonian path is called a traceable graph. A graph is Hamiltonian-connected if for every pair of vertices there is a Hamiltonian path between the two vertices. A Hamiltonian cycle, Hamiltonian circuit, vertex tour or graph cycle is a cycle that visits each vertex exactly once.
A path is a particularly simple example of a tree, and in fact the paths are exactly the trees in which no vertex has degree 3 or more. A disjoint union of paths is called a linear forest . Paths are fundamental concepts of graph theory, described in the introductory sections of most graph theory texts.
Since the graph corresponding to historical Königsberg has four nodes of odd degree, it cannot have an Eulerian path. An alternative form of the problem asks for a path that traverses all bridges and also has the same starting and ending point. Such a walk is called an Eulerian circuit or an Euler tour. Such a circuit exists if, and only if ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph , G , contains a Hamiltonian path , a path that visits every vertex in the graph exactly once.